""" 表格单元格匹配器 负责将 HTML 表格单元格与 PaddleOCR bbox 进行匹配 """ from typing import List, Dict, Tuple, Optional from bs4 import BeautifulSoup import numpy as np try: from rapidfuzz import fuzz except ImportError: from fuzzywuzzy import fuzz try: from .text_matcher import TextMatcher from .bbox_extractor import BBoxExtractor except ImportError: from text_matcher import TextMatcher from bbox_extractor import BBoxExtractor class TableCellMatcher: """表格单元格匹配器""" def __init__(self, text_matcher: TextMatcher, x_tolerance: int = 3, y_tolerance: int = 10): """ Args: text_matcher: 文本匹配器 x_tolerance: X轴容差(用于列边界判断) y_tolerance: Y轴容差(用于行分组) """ self.text_matcher = text_matcher self.x_tolerance = x_tolerance self.y_tolerance = y_tolerance def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict], start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]: """ 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域) 策略: 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes 2. 将筛选后的 boxes 按行分组 3. 智能匹配 HTML 行与 paddle 行组 4. 在匹配的组内查找单元格 Args: html: HTML 表格 paddle_text_boxes: 全部 paddle OCR 结果 start_pointer: 开始位置 table_bbox: 表格边界框 [x1, y1, x2, y2] """ soup = BeautifulSoup(html, 'html.parser') cells = [] # 🔑 第一步:筛选表格区域内的 paddle boxes table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region( paddle_text_boxes[start_pointer:], table_bbox, html ) if not table_region_boxes: print(f"⚠️ 未在表格区域找到 paddle boxes") return str(soup), cells, start_pointer print(f"📊 表格区域: {len(table_region_boxes)} 个文本框") print(f" 边界: {actual_table_bbox}") # 🔑 第二步:将表格区域的 boxes 按行分组 grouped_boxes = self._group_paddle_boxes_by_rows( table_region_boxes, y_tolerance=self.y_tolerance, auto_correct_skew=True ) # 🔑 第三步:在每组内按 x 坐标排序 for group in grouped_boxes: group['boxes'].sort(key=lambda x: x['bbox'][0]) grouped_boxes.sort(key=lambda g: g['y_center']) print(f" 分组: {len(grouped_boxes)} 行") # 🔑 第四步:智能匹配 HTML 行与 paddle 行组 html_rows = soup.find_all('tr') row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes) print(f" HTML行: {len(html_rows)} 行") print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射") # 🔑 第五步:遍历 HTML 表格,使用映射关系查找 for row_idx, row in enumerate(html_rows): group_indices = row_mapping.get(row_idx, []) if not group_indices: continue # 合并多个组的 boxes current_boxes = [] for group_idx in group_indices: if group_idx < len(grouped_boxes): current_boxes.extend(grouped_boxes[group_idx]['boxes']) current_boxes.sort(key=lambda x: x['bbox'][0]) # 🎯 关键改进:提取 HTML 单元格并预先确定列边界 html_cells = row.find_all(['td', 'th']) if not html_cells: continue # 🔑 预估列边界(基于 x 坐标分布) col_boundaries = self._estimate_column_boundaries( current_boxes, len(html_cells) ) print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}") # 🎯 关键改进:顺序指针匹配 box_pointer = 0 # 当前行的 boxes 指针 for col_idx, cell in enumerate(html_cells): cell_text = cell.get_text(strip=True) if not cell_text: continue # 🔑 从当前指针开始匹配 matched_result = self._match_cell_sequential( cell_text, current_boxes, col_boundaries, box_pointer ) if matched_result: merged_bbox = matched_result['bbox'] merged_text = matched_result['text'] cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]" cell['data-score'] = f"{matched_result['score']:.4f}" cell['data-paddle-indices'] = str(matched_result['paddle_indices']) cells.append({ 'type': 'table_cell', 'text': cell_text, 'matched_text': merged_text, 'bbox': merged_bbox, 'row': row_idx + 1, 'col': col_idx + 1, 'score': matched_result['score'], 'paddle_bbox_indices': matched_result['paddle_indices'] }) # 标记已使用 for box in matched_result['used_boxes']: box['used'] = True # 🎯 移动指针到最后使用的 box 之后 box_pointer = matched_result['last_used_index'] + 1 print(f" 列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})") # 计算新的指针位置 used_count = sum(1 for box in table_region_boxes if box.get('used')) new_pointer = start_pointer + used_count print(f" 匹配: {len(cells)} 个单元格") return str(soup), cells, new_pointer def _estimate_column_boundaries(self, boxes: List[Dict], num_cols: int) -> List[Tuple[int, int]]: """ 估算列边界(改进版:处理同列多文本框) Args: boxes: 当前行的所有 boxes(已按 x 排序) num_cols: HTML 表格的列数 Returns: 列边界列表 [(x_start, x_end), ...] """ if not boxes: return [] # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框) x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance) print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇") # 获取所有 x 坐标范围 x_min = min(cluster['x_min'] for cluster in x_clusters) x_max = max(cluster['x_max'] for cluster in x_clusters) # 🎯 策略 1: 如果聚类数量<=列数接近 if len(x_clusters) <= num_cols: # 直接使用聚类边界 boundaries = [(cluster['x_min'], cluster['x_max']) for cluster in x_clusters] return boundaries # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇) if len(x_clusters) > num_cols: print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇") # 合并相近的簇 merged_clusters = self._merge_close_clusters(x_clusters, num_cols) boundaries = [(cluster['x_min'], cluster['x_max']) for cluster in merged_clusters] return boundaries return [] def _cluster_boxes_by_x(self, boxes: List[Dict], x_tolerance: int = 3) -> List[Dict]: """ 按 x 坐标聚类(合并同列的多个文本框) Args: boxes: 文本框列表 x_tolerance: X坐标容忍度 Returns: 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...] """ if not boxes: return [] # 按左边界 x 坐标排序 sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0]) clusters = [] current_cluster = None for box in sorted_boxes: bbox = box['bbox'] x_start = bbox[0] x_end = bbox[2] if current_cluster is None: # 开始新簇 current_cluster = { 'x_min': x_start, 'x_max': x_end, 'boxes': [box] } else: # 🔑 检查是否属于当前簇(修正后的逻辑) # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min # 2. 或者距离在容忍度内 has_overlap = (x_start <= current_cluster['x_max'] and x_end >= current_cluster['x_min']) is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance if has_overlap or is_close: # 合并到当前簇 current_cluster['boxes'].append(box) current_cluster['x_min'] = min(current_cluster['x_min'], x_start) current_cluster['x_max'] = max(current_cluster['x_max'], x_end) else: # 保存当前簇,开始新簇 clusters.append(current_cluster) current_cluster = { 'x_min': x_start, 'x_max': x_end, 'boxes': [box] } # 添加最后一簇 if current_cluster: clusters.append(current_cluster) return clusters def _merge_close_clusters(self, clusters: List[Dict], target_count: int) -> List[Dict]: """ 合并相近的簇,直到数量等于目标列数 Args: clusters: 聚类列表 target_count: 目标列数 Returns: 合并后的聚类列表 """ if len(clusters) <= target_count: return clusters # 复制一份,避免修改原数据 working_clusters = [c.copy() for c in clusters] while len(working_clusters) > target_count: # 找到距离最近的两个簇 min_distance = float('inf') merge_idx = 0 for i in range(len(working_clusters) - 1): distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max'] if distance < min_distance: min_distance = distance merge_idx = i # 合并 cluster1 = working_clusters[merge_idx] cluster2 = working_clusters[merge_idx + 1] merged_cluster = { 'x_min': cluster1['x_min'], 'x_max': cluster2['x_max'], 'boxes': cluster1['boxes'] + cluster2['boxes'] } # 替换 working_clusters[merge_idx] = merged_cluster working_clusters.pop(merge_idx + 1) return working_clusters def _get_boxes_in_column(self, boxes: List[Dict], boundaries: List[Tuple[int, int]], col_idx: int) -> List[Dict]: """ 获取指定列范围内的 boxes(改进版:包含重叠) Args: boxes: 当前行的所有 boxes boundaries: 列边界 col_idx: 列索引 Returns: 该列的 boxes """ if col_idx >= len(boundaries): return [] x_start, x_end = boundaries[col_idx] col_boxes = [] for box in boxes: bbox = box['bbox'] box_x_start = bbox[0] box_x_end = bbox[2] # 🔑 改进:检查是否有重叠(不只是中心点) overlap = not (box_x_start > x_end or box_x_end < x_start) if overlap: col_boxes.append(box) return col_boxes def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict], table_bbox: Optional[List[int]], html: str) -> Tuple[List[Dict], List[int]]: """ 筛选表格区域内的 paddle boxes 策略: 1. 如果有 table_bbox,使用边界框筛选(扩展边界) 2. 如果没有 table_bbox,通过内容匹配推断区域 Args: paddle_boxes: paddle OCR 结果 table_bbox: 表格边界框 [x1, y1, x2, y2] html: HTML 内容(用于内容验证) Returns: (筛选后的 boxes, 实际表格边界框) """ if not paddle_boxes: return [], [0, 0, 0, 0] # 🎯 策略 1: 使用提供的 table_bbox(扩展边界) if table_bbox and len(table_bbox) == 4: x1, y1, x2, y2 = table_bbox # 扩展边界(考虑边框外的文本) margin = 20 expanded_bbox = [ max(0, x1 - margin), max(0, y1 - margin), x2 + margin, y2 + margin ] filtered = [] for box in paddle_boxes: bbox = box['bbox'] box_center_x = (bbox[0] + bbox[2]) / 2 box_center_y = (bbox[1] + bbox[3]) / 2 # 中心点在扩展区域内 if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and expanded_bbox[1] <= box_center_y <= expanded_bbox[3]): filtered.append(box) if filtered: # 计算实际边界框 actual_bbox = [ min(b['bbox'][0] for b in filtered), min(b['bbox'][1] for b in filtered), max(b['bbox'][2] for b in filtered), max(b['bbox'][3] for b in filtered) ] return filtered, actual_bbox # 🎯 策略 2: 通过内容匹配推断区域 print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...") # 提取 HTML 中的所有文本 from bs4 import BeautifulSoup soup = BeautifulSoup(html, 'html.parser') html_texts = set() for cell in soup.find_all(['td', 'th']): text = cell.get_text(strip=True) if text: html_texts.add(self.text_matcher.normalize_text(text)) if not html_texts: return [], [0, 0, 0, 0] # 找出与 HTML 内容匹配的 boxes matched_boxes = [] for box in paddle_boxes: normalized_text = self.text_matcher.normalize_text(box['text']) # 检查是否匹配 if any(normalized_text in ht or ht in normalized_text for ht in html_texts): matched_boxes.append(box) if not matched_boxes: # 🔑 降级:如果精确匹配失败,使用模糊匹配 print(" ℹ️ 精确匹配失败,尝试模糊匹配...") for box in paddle_boxes: normalized_text = self.text_matcher.normalize_text(box['text']) for ht in html_texts: similarity = fuzz.partial_ratio(normalized_text, ht) if similarity >= 70: # 降低阈值 matched_boxes.append(box) break if matched_boxes: # 计算边界框 actual_bbox = [ min(b['bbox'][0] for b in matched_boxes), min(b['bbox'][1] for b in matched_boxes), max(b['bbox'][2] for b in matched_boxes), max(b['bbox'][3] for b in matched_boxes) ] # 🔑 扩展边界,包含可能遗漏的文本 margin = 30 expanded_bbox = [ max(0, actual_bbox[0] - margin), max(0, actual_bbox[1] - margin), actual_bbox[2] + margin, actual_bbox[3] + margin ] # 重新筛选(包含边界上的文本) final_filtered = [] for box in paddle_boxes: bbox = box['bbox'] box_center_x = (bbox[0] + bbox[2]) / 2 box_center_y = (bbox[1] + bbox[3]) / 2 if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and expanded_bbox[1] <= box_center_y <= expanded_bbox[3]): final_filtered.append(box) return final_filtered, actual_bbox # 🔑 最后的降级:返回所有 boxes print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes") if paddle_boxes: actual_bbox = [ min(b['bbox'][0] for b in paddle_boxes), min(b['bbox'][1] for b in paddle_boxes), max(b['bbox'][2] for b in paddle_boxes), max(b['bbox'][3] for b in paddle_boxes) ] return paddle_boxes, actual_bbox return [], [0, 0, 0, 0] def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict], y_tolerance: int = 10, auto_correct_skew: bool = True) -> List[Dict]: """ 将 paddle_text_boxes 按 y 坐标分组(聚类)- 增强版本 Args: paddle_boxes: Paddle OCR 文字框列表 y_tolerance: Y 坐标容忍度(像素) auto_correct_skew: 是否自动校正倾斜 Returns: 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]} """ if not paddle_boxes: return [] # 🎯 步骤 1: 检测并校正倾斜(使用 BBoxExtractor) if auto_correct_skew: rotation_angle = BBoxExtractor.calculate_skew_angle(paddle_boxes) if abs(rotation_angle) > 0.5: max_x = max(box['bbox'][2] for box in paddle_boxes) max_y = max(box['bbox'][3] for box in paddle_boxes) image_size = (max_x, max_y) print(f" 🔧 校正倾斜角度: {rotation_angle:.2f}°") paddle_boxes = BBoxExtractor.correct_boxes_skew( paddle_boxes, -rotation_angle, image_size ) # 🎯 步骤 2: 按校正后的 y 坐标分组 boxes_with_y = [] for box in paddle_boxes: bbox = box['bbox'] y_center = (bbox[1] + bbox[3]) / 2 boxes_with_y.append({ 'y_center': y_center, 'box': box }) # 按 y 坐标排序 boxes_with_y.sort(key=lambda x: x['y_center']) groups = [] current_group = None for item in boxes_with_y: if current_group is None: # 开始新组 current_group = { 'y_center': item['y_center'], 'boxes': [item['box']] } else: if abs(item['y_center'] - current_group['y_center']) <= y_tolerance: current_group['boxes'].append(item['box']) # 更新组的中心 current_group['y_center'] = sum( (b['bbox'][1] + b['bbox'][3]) / 2 for b in current_group['boxes'] ) / len(current_group['boxes']) else: groups.append(current_group) current_group = { 'y_center': item['y_center'], 'boxes': [item['box']] } if current_group: groups.append(current_group) print(f" ✓ 分组完成: {len(groups)} 行") return groups def _match_html_rows_to_paddle_groups(self, html_rows: List, grouped_boxes: List[Dict]) -> Dict[int, List[int]]: """ 智能匹配 HTML 行与 paddle 分组(增强版 DP:支持跳过 HTML 行,防止链条断裂) """ if not html_rows or not grouped_boxes: return {} mapping = {} # 🎯 策略 1: 数量相等,简单 1:1 映射 if len(html_rows) == len(grouped_boxes): for i in range(len(html_rows)): mapping[i] = [i] return mapping # --- 准备数据 --- # 提取 HTML 文本 html_row_texts = [] for row in html_rows: cells = row.find_all(['td', 'th']) texts = [self.text_matcher.normalize_text(c.get_text(strip=True)) for c in cells] html_row_texts.append("".join(texts)) # 预计算所有组的文本 group_texts = [] for group in grouped_boxes: boxes = group['boxes'] texts = [self.text_matcher.normalize_text(b['text']) for b in boxes] group_texts.append("".join(texts)) n_html = len(html_row_texts) n_paddle = len(grouped_boxes) # ⚡️ 优化 3: 预计算合并文本 MAX_MERGE = 4 merged_cache = {} for j in range(n_paddle): current_t = "" for k in range(MAX_MERGE): if j + k < n_paddle: current_t += group_texts[j + k] merged_cache[(j, k + 1)] = current_t else: break # --- 动态规划 (DP) --- # dp[i][j] 表示:HTML 前 i 行 (0..i) 匹配到了 Paddle 的前 j 组 (0..j) 的最大得分 # 初始化为负无穷 dp = np.full((n_html, n_paddle), -np.inf) # 记录路径:path[i][j] = (prev_j, start_j) # prev_j: 上一行结束的 paddle index # start_j: 当前行开始的 paddle index (因为一行可能对应多个组) path = {} # 参数配置 SEARCH_WINDOW = 15 # 向前搜索窗口 SKIP_PADDLE_PENALTY = 0.1 # 跳过 Paddle 组的惩罚 SKIP_HTML_PENALTY = 0.3 # 关键:跳过 HTML 行的惩罚 # --- 1. 初始化第一行 --- # 选项 A: 匹配 Paddle 组 for end_j in range(min(n_paddle, SEARCH_WINDOW + MAX_MERGE)): for count in range(1, MAX_MERGE + 1): start_j = end_j - count + 1 if start_j < 0: continue current_text = merged_cache.get((start_j, count), "") similarity = self._calculate_similarity(html_row_texts[0], current_text) penalty = start_j * SKIP_PADDLE_PENALTY score = similarity - penalty # 只有得分尚可才作为有效状态 if score > 0.1: if score > dp[0][end_j]: dp[0][end_j] = score path[(0, end_j)] = (-1, start_j) # 选项 B: 第一行就跳过 (虽然少见,但为了完整性) # 如果第一行跳过,相当于没有消耗任何 paddle 组,状态难以用 dp[0][j] 表达 # 这里简化处理,假设第一行必须匹配点什么,或者由后续行修正 # --- 2. 状态转移 --- for i in range(1, n_html): html_text = html_row_texts[i] # 获取上一行所有有效位置 valid_prev_indices = [j for j in range(n_paddle) if dp[i-1][j] > -np.inf] # 剪枝 if len(valid_prev_indices) > 30: valid_prev_indices.sort(key=lambda j: dp[i-1][j], reverse=True) valid_prev_indices = valid_prev_indices[:30] # 🛡️ 关键修复:允许跳过当前 HTML 行 (继承上一行的状态) # 如果跳过当前行,Paddle 指针 j 不变 for prev_j in valid_prev_indices: score_skip = dp[i-1][prev_j] - SKIP_HTML_PENALTY if score_skip > dp[i][prev_j]: dp[i][prev_j] = score_skip # 记录路径:start_j = prev_j + 1 表示没有消耗新组 (空范围) path[(i, prev_j)] = (prev_j, prev_j + 1) # 如果是空行,直接跳过计算,仅保留继承的状态 if not html_text: continue # 正常匹配逻辑 for prev_j in valid_prev_indices: prev_score = dp[i-1][prev_j] max_gap = min(SEARCH_WINDOW, n_paddle - prev_j - 1) for gap in range(max_gap): start_j = prev_j + 1 + gap for count in range(1, MAX_MERGE + 1): end_j = start_j + count - 1 if end_j >= n_paddle: break current_text = merged_cache.get((start_j, count), "") # 长度预筛选 h_len = len(html_text) p_len = len(current_text) if h_len > 10 and p_len < h_len * 0.2: continue similarity = self._calculate_similarity(html_text, current_text) # 计算惩罚 # 1. 跳过惩罚 (gap) # 2. 长度惩罚 (防止过度合并) len_penalty = 0.0 if h_len > 0: ratio = p_len / h_len if ratio > 2.0: len_penalty = (ratio - 2.0) * 0.2 current_score = similarity - (gap * SKIP_PADDLE_PENALTY) - len_penalty # 只有正收益才转移 if current_score > 0.1: total_score = prev_score + current_score if total_score > dp[i][end_j]: dp[i][end_j] = total_score path[(i, end_j)] = (prev_j, start_j) # --- 3. 回溯找最优路径 --- # 找到最后一行得分最高的结束位置 best_end_j = -1 max_score = -np.inf # 优先找最后一行,如果最后一行没匹配上,往前找 found_end = False for i in range(n_html - 1, -1, -1): for j in range(n_paddle): if dp[i][j] > max_score: max_score = dp[i][j] best_end_j = j best_last_row = i if max_score > -np.inf: found_end = True break mapping = {} used_groups = set() if found_end: curr_i = best_last_row curr_j = best_end_j while curr_i >= 0: if (curr_i, curr_j) in path: prev_j, start_j = path[(curr_i, curr_j)] # 如果 start_j <= curr_j,说明消耗了 Paddle 组 # 如果 start_j > curr_j,说明是跳过 HTML 行 (空范围) if start_j <= curr_j: indices = list(range(start_j, curr_j + 1)) mapping[curr_i] = indices used_groups.update(indices) else: mapping[curr_i] = [] curr_j = prev_j curr_i -= 1 else: break # 填补未匹配的行 for i in range(n_html): if i not in mapping: mapping[i] = [] # --- 4. 后处理:未匹配组的归属 (Orphans) --- unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups] if unused_groups: print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}") for unused_idx in unused_groups: unused_group = grouped_boxes[unused_idx] unused_y_min = min(b['bbox'][1] for b in unused_group['boxes']) unused_y_max = max(b['bbox'][3] for b in unused_group['boxes']) above_idx = None below_idx = None above_distance = float('inf') below_distance = float('inf') for i in range(unused_idx - 1, -1, -1): if i in used_groups: above_idx = i above_group = grouped_boxes[i] max_y_box = max(above_group['boxes'], key=lambda b: b['bbox'][3]) above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2 above_distance = abs(unused_y_min - above_y_center) break for i in range(unused_idx + 1, len(grouped_boxes)): if i in used_groups: below_idx = i below_group = grouped_boxes[i] min_y_box = min(below_group['boxes'], key=lambda b: b['bbox'][1]) below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2 below_distance = abs(below_y_center - unused_y_max) break closest_used_idx = None merge_direction = "" if above_idx is not None and below_idx is not None: if above_distance < below_distance: closest_used_idx = above_idx merge_direction = "上方" else: closest_used_idx = below_idx merge_direction = "下方" elif above_idx is not None: closest_used_idx = above_idx merge_direction = "上方" elif below_idx is not None: closest_used_idx = below_idx merge_direction = "下方" if closest_used_idx is not None: target_html_row = None for html_row_idx, group_indices in mapping.items(): if closest_used_idx in group_indices: target_html_row = html_row_idx break if target_html_row is not None: if unused_idx not in mapping[target_html_row]: mapping[target_html_row].append(unused_idx) mapping[target_html_row].sort() print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}({merge_direction}行)") used_groups.add(unused_idx) # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引 for row_idx in mapping: if mapping[row_idx]: mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center']) return mapping def _calculate_similarity(self, text1: str, text2: str) -> float: """ 计算两个文本的相似度,结合字符覆盖率和序列相似度 (性能优化版) """ if not text1 or not text2: return 0.0 len1, len2 = len(text1), len(text2) # ⚡️ 优化 1: 长度快速检查 # 如果长度差异过大(例如一个 50 字符,一个 2 字符),直接认为不匹配 if len1 > 0 and len2 > 0: min_l, max_l = min(len1, len2), max(len1, len2) if max_l > 10 and min_l / max_l < 0.2: return 0.0 # 1. 字符覆盖率 (Character Overlap) from collections import Counter c1 = Counter(text1) c2 = Counter(text2) intersection = c1 & c2 overlap_count = sum(intersection.values()) coverage = overlap_count / len1 if len1 > 0 else 0 # ⚡️ 优化 2: 覆盖率低时跳过昂贵的 fuzz 计算 # 如果字符重叠率低于 30%,说明内容基本不相关,没必要算序列相似度 if coverage < 0.3: return coverage * 0.7 # 2. 序列相似度 (Sequence Similarity) # 使用 token_sort_ratio 来容忍一定的乱序 seq_score = fuzz.token_sort_ratio(text1, text2) / 100.0 return (coverage * 0.7) + (seq_score * 0.3) def _preprocess_text_for_matching(self, text: str) -> str: """ 预处理文本:在不同类型的字符(如中文和数字/英文)之间插入空格, 以便于 token_sort_ratio 更准确地进行分词和匹配。 """ if not text: return "" import re # 1. 在中文和非中文(数字/字母)之间插入空格 # 例如: "2024年" -> "2024 年", "ID号码123" -> "ID号码 123" text = re.sub(r'([\u4e00-\u9fa5])([a-zA-Z0-9])', r'\1 \2', text) text = re.sub(r'([a-zA-Z0-9])([\u4e00-\u9fa5])', r'\1 \2', text) return text def _calculate_subsequence_score(self, target: str, source: str) -> float: """ 计算子序列匹配得分 (解决 OCR 噪音插入问题) 例如: Target="12345", Source="12(date)34(time)5" -> Score close to 100 """ # 1. 仅保留字母和数字,忽略符号干扰 t_clean = "".join(c for c in target if c.isalnum()) s_clean = "".join(c for c in source if c.isalnum()) if not t_clean or not s_clean: return 0.0 # 2. 贪婪匹配子序列 t_idx, s_idx = 0, 0 matches = 0 while t_idx < len(t_clean) and s_idx < len(s_clean): if t_clean[t_idx] == s_clean[s_idx]: matches += 1 t_idx += 1 s_idx += 1 else: # 跳过 source 中的噪音字符 s_idx += 1 # 3. 计算得分 match_rate = matches / len(t_clean) # 如果匹配率太低,直接返回 if match_rate < 0.8: return match_rate * 100 # 4. 噪音惩罚 (防止 Target="1", Source="123456789" 这种误判) # 计算噪音长度 noise_len = len(s_clean) - matches # 允许一定比例的噪音 (例如日期时间插入,通常占总长度的 30%-50%) # 如果噪音长度超过目标长度的 60%,开始扣分 penalty = 0 if noise_len > len(t_clean) * 0.6: excess_noise = noise_len - (len(t_clean) * 0.6) penalty = excess_noise * 0.5 # 每多一个噪音字符扣 0.5 分 penalty = min(penalty, 20) # 最多扣 20 分 final_score = (match_rate * 100) - penalty return max(0, final_score) def _match_cell_sequential(self, cell_text: str, boxes: List[Dict], col_boundaries: List[Tuple[int, int]], start_idx: int) -> Optional[Dict]: """ 🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配 """ cell_text_normalized = self.text_matcher.normalize_text(cell_text) cell_text_processed = self._preprocess_text_for_matching(cell_text) if len(cell_text_normalized) < 1: return None # 🔑 找到第一个未使用的 box first_unused_idx = start_idx while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'): first_unused_idx += 1 if first_unused_idx >= len(boxes): return None # 🔑 策略 1: 单个 box 精确匹配 for box in boxes[first_unused_idx:]: box_text = self.text_matcher.normalize_text(box['text']) if cell_text_normalized == box_text: return self._build_match_result([box], box['text'], 100.0, boxes.index(box)) # 🔑 策略 2: 多个 boxes 合并匹配 unused_boxes = [b for b in boxes if not b.get('used')] # 合并同列的 boxes 合并 merged_bboxes = [] for col_idx in range(len(col_boundaries)): combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx) if len(combo_boxes) > 0: sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0])) # 🎯 改进:使用空格连接,以便于 token_sort_ratio 进行乱序匹配 merged_text = ' '.join([b['text'] for b in sorted_combo]) merged_bboxes.append({ 'text': merged_text, 'sorted_combo': sorted_combo }) for box in merged_bboxes: # 1. 精确匹配 merged_text_normalized = self.text_matcher.normalize_text(box['text']) if cell_text_normalized == merged_text_normalized: last_sort_idx = boxes.index(box['sorted_combo'][-1]) return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx) # 2. 子串匹配 is_substring = (cell_text_normalized in merged_text_normalized or merged_text_normalized in cell_text_normalized) # 3. 模糊匹配 # 🎯 改进:使用预处理后的文本进行 token_sort_ratio 计算 box_text_processed = self._preprocess_text_for_matching(box['text']) # token_sort_ratio: 自动分词并排序比较,解决 OCR 结果顺序与 HTML 不一致的问题 token_sort_sim = fuzz.token_sort_ratio(cell_text_processed, box_text_processed) # partial_ratio: 子串模糊匹配,解决 OCR 识别错误 partial_sim = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized) # 🎯 新增:token_set_ratio (集合匹配) # 专门解决:目标文本被 OCR 文本中的噪音隔开的情况 # 例如 Target="A B", OCR="A noise B" -> token_set_ratio 会很高 token_set_sim = fuzz.token_set_ratio(cell_text_processed, box_text_processed) # 🎯 策略 4: 重构匹配 (Reconstruction Match) - 解决 ID 被噪音打断的问题 # 逻辑:提取 OCR 中所有属于 Target 子串的 token,拼起来再比 reconstruct_sim = 0.0 if len(cell_text_normalized) > 10: # 仅对长文本启用,防止短文本误判 # 使用预处理后的文本分词 (已处理中文/数字间隔) box_tokens = box_text_processed.split() # 筛选出所有是目标文本子串的 token valid_tokens = [] for token in box_tokens: # 忽略太短的 token (除非目标也很短),防止 "1" 这种误匹配 if len(token) < 2 and len(cell_text_normalized) > 5: continue if token in cell_text_normalized: valid_tokens.append(token) if valid_tokens: # 拼接回原始形态 reconstructed_text = "".join(valid_tokens) reconstruct_sim = fuzz.ratio(cell_text_normalized, reconstructed_text) if reconstruct_sim > 90: print(f" 🧩 重构匹配生效: '{reconstructed_text}' (sim={reconstruct_sim})") # 🎯 策略 5: 子序列匹配 (Subsequence Match) - 解决粘连噪音问题 # 专门针对: '1544...1050' + '2024-08-10' + '0433...' 这种场景 subseq_sim = 0.0 if len(cell_text_normalized) > 8: # 仅对较长文本启用 subseq_sim = self._calculate_subsequence_score(cell_text_normalized, merged_text_normalized) # 🛡️ 关键修复:长度和类型防御 if subseq_sim > 80: len_cell = len(cell_text_normalized) len_box = len(merged_text_normalized) # 1. 长度差异过大 (Box 比 Cell 长很多) if len_box > len_cell * 1.5: # 2. 且 Cell 是数字/日期/时间类型 (容易在长ID中误配) import re # 匹配纯数字、日期时间格式 if re.match(r'^[\d\-\:\.\s]+$', cell_text_normalized): print(f" ⚠️ 拒绝子序列匹配: 长度差异大且为数字类型 (sim={subseq_sim})") subseq_sim = 0.0 if subseq_sim > 90: print(f" 🔗 子序列匹配生效: '{cell_text[:10]}...' (sim={subseq_sim:.1f})") # 综合得分:取五者最大值 similarity = max(token_sort_sim, partial_sim, token_set_sim, reconstruct_sim, subseq_sim) # 🎯 子串匹配加分 if is_substring: similarity = min(100, similarity + 10) # 🎯 长度惩罚:如果 box 内容比 cell 多太多(例如吞了下一个单元格),扣分 # 注意:token_set_ratio 对长度不敏感,所以这里必须严格检查长度,防止误判 # 只有当 similarity 很高时才检查,防止误杀 if similarity > 80: len_cell = len(cell_text_normalized) len_box = len(merged_text_normalized) # 如果是 token_set_sim 贡献的高分,说明 OCR 里包含了很多噪音 # 我们需要确保这些噪音不是“下一个单元格的内容” # 这里可以加一个更严格的长度检查,或者检查是否包含换行符等 if len_box > len_cell * 2.0 + 10: # 放宽一点,因为 token_set 本来就是处理噪音的 similarity -= 10 # 稍微扣一点分,表示虽然全找到了,但噪音太多不太完美 if similarity >= self.text_matcher.similarity_threshold: print(f" ✓ 匹配成功: '{cell_text[:15]}' vs '{box['text'][:15]}' (相似度: {similarity})") # 由于是模糊匹配,返回第一个未使用的 box 作为 last_index for b in boxes: if not b.get('used'): last_idx = max(boxes.index(b)-1, 0) break return self._build_match_result(box['sorted_combo'], box['text'], similarity, max(start_idx, last_idx)) print(f" ✗ 匹配失败: '{cell_text[:15]}'") return None def _build_match_result(self, boxes: List[Dict], text: str, score: float, last_index: int) -> Dict: """构建匹配结果(使用原始坐标)""" # 🔑 关键修复:使用 original_bbox(如果存在) def get_original_bbox(box: Dict) -> List[int]: return box.get('original_bbox', box['bbox']) original_bboxes = [get_original_bbox(b) for b in boxes] merged_bbox = [ min(b[0] for b in original_bboxes), min(b[1] for b in original_bboxes), max(b[2] for b in original_bboxes), max(b[3] for b in original_bboxes) ] return { 'bbox': merged_bbox, # ✅ 使用原始坐标 'text': text, 'score': score, 'paddle_indices': [b['paddle_bbox_index'] for b in boxes], 'used_boxes': boxes, 'last_used_index': last_index }