data_processor.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. """
  2. 数据处理模块
  3. 负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
  4. """
  5. from typing import List, Dict, Tuple, Optional
  6. from bs4 import BeautifulSoup
  7. try:
  8. from .text_matcher import TextMatcher
  9. from .bbox_extractor import BBoxExtractor
  10. from .table_cell_matcher import TableCellMatcher
  11. except ImportError:
  12. from text_matcher import TextMatcher
  13. from bbox_extractor import BBoxExtractor
  14. from table_cell_matcher import TableCellMatcher
  15. class DataProcessor:
  16. """数据处理器"""
  17. """_summary_
  18. 1.负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 table_cells bbox 信息, 其他类型的bbox信息依然使用vl自带的bbox
  19. 2.由于不同OCR工具的输出格式不同,DataProcessor 需要包含多个处理方法,分别处理 MinerU、DotsOCR 和 PaddleOCR_VL 数据, 都先转换成mineru格式再添加table cells bbox信息
  20. 3.使用 TextMatcher 进行文本匹配,TableCellMatcher 进行表单元格匹配
  21. 4.最终输出统一的 MinerU 格式数据
  22. 由于VL模型minerU,dotsocr坐标都是使用的原图坐标,不是旋转后的坐标,PaddleVL使用的时旋转转换后的坐标,而ppstructure使用的ocr文本块是旋转后的坐标,
  23. 因此在处理VL数据时,
  24. 1.首先需要根据ppstructure的旋转角度和原图尺寸,将VL的table坐标转换为旋转后的坐标
  25. 2.通过TableCellMatcher 进行表单元格匹配
  26. 3.再将匹配到的单元格bbox逆向转换为原图坐标,存储在最终输出的MinerU格式数据中
  27. 4.其他类型的bbox信息依然使用vl自带的bbox
  28. """
  29. def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10, x_tolerance: int = 3, y_tolerance: int = 10):
  30. """
  31. Args:
  32. text_matcher: 文本匹配器
  33. look_ahead_window: 向前查找窗口
  34. x_tolerance: x轴容差
  35. """
  36. self.text_matcher = text_matcher
  37. self.look_ahead_window = look_ahead_window
  38. # X轴容差, 用于判断文本框是否在同一列
  39. self.x_tolerance = x_tolerance
  40. self.y_tolerance = y_tolerance # Y轴容差, 用于行分组
  41. # 🎯 创建表格单元格匹配器
  42. self.table_cell_matcher = TableCellMatcher(
  43. text_matcher=text_matcher,
  44. x_tolerance=x_tolerance,
  45. y_tolerance=y_tolerance
  46. )
  47. def process_mineru_data(self, mineru_data: List[Dict],
  48. paddle_text_boxes: List[Dict], rotation_angle: float, orig_image_size: Tuple[int, int]) -> List[Dict]:
  49. """
  50. 处理 MinerU 数据,添加 bbox 信息
  51. Args:
  52. mineru_data: MinerU 数据
  53. paddle_text_boxes: PaddleOCR 文字框列表
  54. Returns:
  55. 合并后的数据, table cell使用paddle的bbox,其他类型只是移动指针,bbox还是沿用minerU的bbox
  56. """
  57. merged_data = []
  58. paddle_pointer = 0
  59. last_matched_index = 0
  60. # 按 bbox 排序
  61. mineru_data.sort(
  62. key=lambda x: (x['bbox'][1], x['bbox'][0])
  63. if 'bbox' in x else (float('inf'), float('inf'))
  64. )
  65. for item in mineru_data:
  66. item_type = item.get('type', '')
  67. if item_type == 'table':
  68. if rotation_angle != 0:
  69. inverse_table_bbox = BBoxExtractor.rotate_box_coordinates(item['bbox'], rotation_angle, orig_image_size)
  70. inverse_item = item.copy()
  71. inverse_item['bbox'] = inverse_table_bbox
  72. else:
  73. inverse_item = item
  74. merged_item, paddle_pointer = self._process_table(
  75. inverse_item, paddle_text_boxes, paddle_pointer
  76. )
  77. # 如果有旋转,需要将匹配到的单元格bbox逆向转换为原图坐标
  78. if rotation_angle != 0:
  79. for cell in merged_item.get('table_cells', []):
  80. cell_bbox = cell.get('bbox', [])
  81. if cell_bbox:
  82. original_bbox = BBoxExtractor.inverse_rotate_box_coordinates(cell_bbox, rotation_angle, orig_image_size)
  83. cell['bbox'] = original_bbox
  84. merged_item['bbox'] = item['bbox'] # 保持表格的原始bbox不变
  85. merged_data.append(merged_item)
  86. elif item_type in ['text', 'title', 'header', 'footer']:
  87. merged_item, paddle_pointer, last_matched_index = self._process_text(
  88. item, paddle_text_boxes, paddle_pointer, last_matched_index
  89. )
  90. merged_data.append(merged_item)
  91. elif item_type == 'list':
  92. merged_item, paddle_pointer, last_matched_index = self._process_list(
  93. item, paddle_text_boxes, paddle_pointer, last_matched_index
  94. )
  95. merged_data.append(merged_item)
  96. else:
  97. merged_data.append(item.copy())
  98. return merged_data
  99. def process_dotsocr_data(self, dotsocr_data: List[Dict],
  100. paddle_text_boxes: List[Dict],
  101. rotation_angle: float,
  102. orig_image_size: Tuple[int, int]) -> List[Dict]:
  103. """
  104. 处理 DotsOCR 数据(简化版:转换后复用 MinerU 处理逻辑)
  105. Args:
  106. dotsocr_data: DotsOCR 输出数据
  107. paddle_text_boxes: PaddleOCR 文本框
  108. rotation_angle: 旋转角度
  109. orig_image_size: 原始图片尺寸
  110. Returns:
  111. 统一的 MinerU 格式数据(带 table_cells bbox)
  112. """
  113. print(f"📊 处理 DotsOCR 数据: {len(dotsocr_data)} 个块")
  114. # 🎯 第一步:转换为 MinerU 格式
  115. mineru_format_data = []
  116. for item in dotsocr_data:
  117. try:
  118. converted_item = self._convert_dotsocr_to_mineru(item)
  119. if converted_item:
  120. mineru_format_data.append(converted_item)
  121. except Exception as e:
  122. print(f"⚠️ DotsOCR 转换失败: {e}")
  123. continue
  124. print(f" ✓ 转换完成: {len(mineru_format_data)} 个块")
  125. # 🎯 第二步:复用 MinerU 处理逻辑
  126. return self.process_mineru_data(
  127. mineru_data=mineru_format_data,
  128. paddle_text_boxes=paddle_text_boxes,
  129. rotation_angle=rotation_angle,
  130. orig_image_size=orig_image_size
  131. )
  132. def _convert_dotsocr_to_mineru(self, dotsocr_item: Dict) -> Dict:
  133. """
  134. 🎯 将 DotsOCR 格式转换为 MinerU 格式
  135. DotsOCR:
  136. {
  137. "category": "Table",
  138. "bbox": [x1, y1, x2, y2],
  139. "text": "..."
  140. }
  141. MinerU:
  142. {
  143. "type": "table",
  144. "bbox": [x1, y1, x2, y2],
  145. "table_body": "...",
  146. "page_idx": 0
  147. }
  148. """
  149. category = dotsocr_item.get('category', '')
  150. # 🎯 Category 映射
  151. category_map = {
  152. 'Page-header': 'header',
  153. 'Page-footer': 'footer',
  154. 'Picture': 'image',
  155. 'Figure': 'image',
  156. 'Section-header': 'title',
  157. 'Table': 'table',
  158. 'Text': 'text',
  159. 'Title': 'title',
  160. 'List': 'list',
  161. 'Caption': 'title'
  162. }
  163. mineru_type = category_map.get(category, 'text')
  164. # 🎯 基础转换
  165. mineru_item = {
  166. 'type': mineru_type,
  167. 'bbox': dotsocr_item.get('bbox', []),
  168. 'page_idx': 0 # DotsOCR 默认单页
  169. }
  170. # 🎯 处理文本内容
  171. text = dotsocr_item.get('text', '')
  172. if mineru_type == 'table':
  173. # 表格:text -> table_body
  174. mineru_item['table_body'] = text
  175. else:
  176. # 其他类型:保持 text
  177. mineru_item['text'] = text
  178. # 标题级别
  179. if category == 'Section-header':
  180. mineru_item['text_level'] = 1
  181. return mineru_item
  182. def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
  183. paddle_text_boxes: List[Dict], rotation_angle: float, orig_image_size: Tuple[int, int]) -> List[Dict]:
  184. """
  185. 处理 PaddleOCR_VL 数据,添加 bbox 信息
  186. Args:
  187. paddleocr_vl_data: PaddleOCR_VL 数据 (JSON 对象)
  188. paddle_text_boxes: PaddleOCR 文字框列表
  189. Returns:
  190. 🎯 MinerU 格式的合并数据(统一输出格式)
  191. """
  192. # 🎯 获取旋转角度和原始图像尺寸
  193. vl_rotation_angle = self._get_rotation_angle_from_vl(paddleocr_vl_data)
  194. vl_orig_image_size = (0,0)
  195. if vl_rotation_angle != 0:
  196. vl_orig_image_size = self._get_original_image_size_from_vl(paddleocr_vl_data)
  197. print(f"🔄 PaddleOCR_VL 检测到旋转角度: {vl_rotation_angle}°")
  198. print(f"📐 原始图像尺寸: {vl_orig_image_size[0]} x {vl_orig_image_size[1]}")
  199. # 提取 parsing_res_list
  200. parsing_res_list = paddleocr_vl_data.get('parsing_res_list', [])
  201. # 按 bbox 排序
  202. parsing_res_list.sort(
  203. key=lambda x: (x['block_bbox'][1], x['block_bbox'][0])
  204. if 'block_bbox' in x else (float('inf'), float('inf'))
  205. )
  206. mineru_format_data = []
  207. for item in parsing_res_list:
  208. # 🎯 先转换 bbox 坐标(如果需要)
  209. if vl_rotation_angle != 0 and orig_image_size:
  210. item = self._transform_vl_block_bbox(item, vl_rotation_angle, vl_orig_image_size)
  211. converted_item = self._convert_paddleocr_vl_to_mineru(item)
  212. if converted_item:
  213. mineru_format_data.append(converted_item)
  214. print(f" ✓ 转换完成: {len(mineru_format_data)} 个块")
  215. # 🎯 第三步:复用 MinerU 处理逻辑
  216. return self.process_mineru_data(
  217. mineru_data=mineru_format_data,
  218. paddle_text_boxes=paddle_text_boxes,
  219. rotation_angle=rotation_angle,
  220. orig_image_size=orig_image_size
  221. )
  222. def _get_rotation_angle_from_vl(self, paddleocr_vl_data: Dict) -> float:
  223. """从 PaddleOCR_VL 数据中获取旋转角度"""
  224. return BBoxExtractor._get_rotation_angle(paddleocr_vl_data)
  225. def _get_original_image_size_from_vl(self, paddleocr_vl_data: Dict) -> tuple:
  226. """从 PaddleOCR_VL 数据中获取原始图像尺寸"""
  227. return BBoxExtractor._get_original_image_size(paddleocr_vl_data)
  228. def _transform_vl_block_bbox(self, item: Dict, angle: float,
  229. orig_image_size: tuple) -> Dict:
  230. """
  231. 转换 PaddleOCR_VL 的 block_bbox 坐标
  232. Args:
  233. item: PaddleOCR_VL 的 block 数据
  234. angle: 旋转角度
  235. orig_image_size: 原始图像尺寸
  236. Returns:
  237. 转换后的 block 数据
  238. """
  239. transformed_item = item.copy()
  240. if 'block_bbox' not in item:
  241. return transformed_item
  242. block_bbox = item['block_bbox']
  243. if len(block_bbox) < 4:
  244. return transformed_item
  245. transformed_bbox = BBoxExtractor.inverse_rotate_box_coordinates(block_bbox, angle, orig_image_size)
  246. transformed_item['block_bbox'] = transformed_bbox
  247. return transformed_item
  248. def _convert_paddleocr_vl_to_mineru(self, paddleocr_vl_item: Dict) -> Dict:
  249. """
  250. 🎯 将 PaddleOCR_VL 格式转换为 MinerU 格式
  251. 基于 PP-DocLayout_plus-L 的 20 种类别
  252. """
  253. block_label = paddleocr_vl_item.get('block_label', '')
  254. # 🎯 PP-DocLayout_plus-L 类别映射(共 20 种)
  255. label_map = {
  256. # 标题类(3种)
  257. 'paragraph_title': 'title',
  258. 'doc_title': 'title',
  259. 'figure_table_chart_title': 'title',
  260. # 文本类(9种)
  261. 'text': 'text',
  262. 'number': 'text',
  263. 'content': 'text',
  264. 'abstract': 'text',
  265. 'footnote': 'text',
  266. 'aside_text': 'text',
  267. 'algorithm': 'text',
  268. 'reference': 'text',
  269. 'reference_content': 'text',
  270. # 页眉页脚(2种)
  271. 'header': 'header',
  272. 'footer': 'footer',
  273. # 表格(1种)
  274. 'table': 'table',
  275. # 图片/图表(3种)
  276. 'image': 'image',
  277. 'chart': 'image',
  278. 'seal': 'image',
  279. # 公式(2种)
  280. 'formula': 'equation',
  281. 'formula_number': 'equation'
  282. }
  283. mineru_type = label_map.get(block_label, 'text')
  284. mineru_item = {
  285. 'type': mineru_type,
  286. 'bbox': paddleocr_vl_item.get('block_bbox', []),
  287. 'page_idx': 0
  288. }
  289. content = paddleocr_vl_item.get('block_content', '')
  290. if mineru_type == 'table':
  291. mineru_item['table_body'] = content
  292. else:
  293. mineru_item['text'] = content
  294. # 标题级别
  295. if block_label == 'doc_title':
  296. mineru_item['text_level'] = 1
  297. elif block_label == 'paragraph_title':
  298. mineru_item['text_level'] = 2
  299. elif block_label == 'figure_table_chart_title':
  300. mineru_item['text_level'] = 3
  301. return mineru_item
  302. def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
  303. start_pointer: int) -> Tuple[Dict, int]:
  304. """
  305. 处理表格类型(MinerU 格式)
  306. 策略:
  307. - 解析 HTML 表格
  308. - 为每个单元格匹配 PaddleOCR 的 bbox
  309. - 返回处理后的表格和新指针位置
  310. """
  311. table_body = item.get('table_body', '')
  312. if not table_body:
  313. print(f"⚠️ 表格内容为空,跳过")
  314. return item, start_pointer
  315. try:
  316. # 🔑 传入 table_bbox 用于筛选
  317. table_bbox = item.get('bbox') # MinerU 提供的表格边界
  318. # 🎯 委托给 TableCellMatcher
  319. enhanced_html, cells, new_pointer = \
  320. self.table_cell_matcher.enhance_table_html_with_bbox(
  321. table_body,
  322. paddle_text_boxes,
  323. start_pointer,
  324. table_bbox
  325. )
  326. # 更新 item
  327. item['table_body'] = enhanced_html
  328. item['table_cells'] = cells
  329. # 统计信息
  330. matched_count = len(cells)
  331. total_cells = len(BeautifulSoup(table_body, 'html.parser').find_all(['td', 'th']))
  332. print(f" 表格单元格: {matched_count}/{total_cells} 匹配")
  333. return item, new_pointer
  334. except Exception as e:
  335. print(f"⚠️ 表格处理失败: {e}")
  336. import traceback
  337. traceback.print_exc()
  338. return item, start_pointer
  339. def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
  340. paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
  341. """处理文本"""
  342. merged_item = item.copy()
  343. text = item.get('text', '')
  344. matched_bbox, paddle_pointer, last_matched_index = \
  345. self.text_matcher.find_matching_bbox(
  346. text, paddle_text_boxes, paddle_pointer, last_matched_index,
  347. self.look_ahead_window
  348. )
  349. if matched_bbox:
  350. matched_bbox['used'] = True
  351. return merged_item, paddle_pointer, last_matched_index
  352. def _process_list(self, item: Dict, paddle_text_boxes: List[Dict],
  353. paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
  354. """处理列表"""
  355. merged_item = item.copy()
  356. list_items = item.get('list_items', [])
  357. for list_item in list_items:
  358. matched_bbox, paddle_pointer, last_matched_index = \
  359. self.text_matcher.find_matching_bbox(
  360. list_item, paddle_text_boxes, paddle_pointer, last_matched_index,
  361. self.look_ahead_window
  362. )
  363. if matched_bbox:
  364. matched_bbox['used'] = True
  365. return merged_item, paddle_pointer, last_matched_index