| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286 |
- """
- 数据处理模块
- 负责处理 MinerU/PaddleOCR_VL/DotsOCR 数据,添加 bbox 信息
- """
- from typing import List, Dict, Tuple, Optional
- from bs4 import BeautifulSoup
- try:
- from .text_matcher import TextMatcher
- from .bbox_extractor import BBoxExtractor
- except ImportError:
- from text_matcher import TextMatcher
- from bbox_extractor import BBoxExtractor
- class DataProcessor:
- """数据处理器"""
-
- def __init__(self, text_matcher: TextMatcher, look_ahead_window: int = 10, x_tolerance: int = 3):
- """
- Args:
- text_matcher: 文本匹配器
- look_ahead_window: 向前查找窗口
- x_tolerance: x轴容差
- """
- self.text_matcher = text_matcher
- self.look_ahead_window = look_ahead_window
- # X轴容差, 用于判断文本框是否在同一列
- self.x_tolerance = x_tolerance
-
- def process_mineru_data(self, mineru_data: List[Dict],
- paddle_text_boxes: List[Dict]) -> List[Dict]:
- """
- 处理 MinerU 数据,添加 bbox 信息
-
- Args:
- mineru_data: MinerU 数据
- paddle_text_boxes: PaddleOCR 文字框列表
-
- Returns:
- 合并后的数据, table cell使用paddle的bbox,其他类型只是移动指针,bbox还是沿用minerU的bbox
- """
- merged_data = []
- paddle_pointer = 0
- last_matched_index = 0
- # 按 bbox 排序
- mineru_data.sort(
- key=lambda x: (x['bbox'][1], x['bbox'][0])
- if 'bbox' in x else (float('inf'), float('inf'))
- )
- for item in mineru_data:
- item_type = item.get('type', '')
-
- if item_type == 'table':
- merged_item, paddle_pointer = self._process_table(
- item, paddle_text_boxes, paddle_pointer
- )
- merged_data.append(merged_item)
-
- elif item_type in ['text', 'title']:
- merged_item, paddle_pointer, last_matched_index = self._process_text(
- item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- elif item_type == 'list':
- merged_item, paddle_pointer, last_matched_index = self._process_list(
- item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- else:
- merged_data.append(item.copy())
-
- return merged_data
-
- def process_dotsocr_data(self, dotsocr_data: List[Dict],
- paddle_text_boxes: List[Dict]) -> List[Dict]:
- """
- 🎯 处理 DotsOCR 数据,转换为 MinerU 格式并添加 bbox 信息
-
- Args:
- dotsocr_data: DotsOCR 数据
- paddle_text_boxes: PaddleOCR 文字框列表
-
- Returns:
- MinerU 格式的合并数据
- """
- merged_data = []
- paddle_pointer = 0
- last_matched_index = 0
-
- # 按 bbox 排序
- dotsocr_data.sort(
- key=lambda x: (x['bbox'][1], x['bbox'][0])
- if 'bbox' in x else (float('inf'), float('inf'))
- )
-
- for item in dotsocr_data:
- # 🎯 转换为 MinerU 格式
- mineru_item = self._convert_dotsocr_to_mineru(item)
- category = mineru_item.get('type', '')
-
- # 🎯 根据类型处理
- if category.lower() == 'table':
- merged_item, paddle_pointer = self._process_table(
- mineru_item, paddle_text_boxes, paddle_pointer
- )
- merged_data.append(merged_item)
-
- elif category.lower() in ['text', 'title', 'header', 'footer']:
- merged_item, paddle_pointer, last_matched_index = self._process_text(
- mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- elif category.lower() == 'list':
- merged_item, paddle_pointer, last_matched_index = self._process_list(
- mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- else:
- # Page-header, Page-footer, Picture 等
- merged_data.append(mineru_item)
-
- return merged_data
-
- def _convert_dotsocr_to_mineru(self, dotsocr_item: Dict) -> Dict:
- """
- 🎯 将 DotsOCR 格式转换为 MinerU 格式
-
- DotsOCR:
- {
- "category": "Table",
- "bbox": [x1, y1, x2, y2],
- "text": "..."
- }
-
- MinerU:
- {
- "type": "table",
- "bbox": [x1, y1, x2, y2],
- "table_body": "...",
- "page_idx": 0
- }
- """
- category = dotsocr_item.get('category', '')
-
- # 🎯 Category 映射
- category_map = {
- 'Page-header': 'header',
- 'Page-footer': 'footer',
- 'Picture': 'image',
- 'Figure': 'image',
- 'Section-header': 'title',
- 'Table': 'table',
- 'Text': 'text',
- 'Title': 'title',
- 'List': 'list',
- 'Caption': 'title'
- }
-
- mineru_type = category_map.get(category, 'text')
-
- # 🎯 基础转换
- mineru_item = {
- 'type': mineru_type,
- 'bbox': dotsocr_item.get('bbox', []),
- 'page_idx': 0 # DotsOCR 默认单页
- }
-
- # 🎯 处理文本内容
- text = dotsocr_item.get('text', '')
-
- if mineru_type == 'table':
- # 表格:text -> table_body
- mineru_item['table_body'] = text
- else:
- # 其他类型:保持 text
- mineru_item['text'] = text
-
- # 标题级别
- if category == 'Section-header':
- mineru_item['text_level'] = 1
-
- return mineru_item
-
- def process_paddleocr_vl_data(self, paddleocr_vl_data: Dict,
- paddle_text_boxes: List[Dict]) -> List[Dict]:
- """
- 处理 PaddleOCR_VL 数据,添加 bbox 信息
-
- Args:
- paddleocr_vl_data: PaddleOCR_VL 数据 (JSON 对象)
- paddle_text_boxes: PaddleOCR 文字框列表
-
- Returns:
- 🎯 MinerU 格式的合并数据(统一输出格式)
- """
- merged_data = []
- paddle_pointer = 0
- last_matched_index = 0
-
- # 🎯 获取旋转角度和原始图像尺寸
- rotation_angle = self._get_rotation_angle_from_vl(paddleocr_vl_data)
- orig_image_size = None
-
- if rotation_angle != 0:
- orig_image_size = self._get_original_image_size_from_vl(paddleocr_vl_data)
- print(f"🔄 PaddleOCR_VL 检测到旋转角度: {rotation_angle}°")
- print(f"📐 原始图像尺寸: {orig_image_size[0]} x {orig_image_size[1]}")
-
- # 提取 parsing_res_list
- parsing_res_list = paddleocr_vl_data.get('parsing_res_list', [])
-
- # 按 bbox 排序
- parsing_res_list.sort(
- key=lambda x: (x['block_bbox'][1], x['block_bbox'][0])
- if 'block_bbox' in x else (float('inf'), float('inf'))
- )
-
- for item in parsing_res_list:
- # 🎯 先转换 bbox 坐标(如果需要)
- if rotation_angle != 0 and orig_image_size:
- item = self._transform_vl_block_bbox(item, rotation_angle, orig_image_size)
-
- # 🎯 统一转换为 MinerU 格式
- mineru_item = self._convert_paddleocr_vl_to_mineru(item)
- item_type = mineru_item.get('type', '')
-
- # 🎯 根据类型处理(复用 MinerU 的通用方法)
- if item_type == 'table':
- merged_item, paddle_pointer = self._process_table(
- mineru_item, paddle_text_boxes, paddle_pointer
- )
- merged_data.append(merged_item)
-
- elif item_type in ['text', 'title', 'header', 'footer', 'equation']:
- merged_item, paddle_pointer, last_matched_index = self._process_text(
- mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- elif item_type == 'list':
- merged_item, paddle_pointer, last_matched_index = self._process_list(
- mineru_item, paddle_text_boxes, paddle_pointer, last_matched_index
- )
- merged_data.append(merged_item)
-
- else:
- # 其他类型(image 等)直接添加
- merged_data.append(mineru_item)
-
- return merged_data
-
- def _get_rotation_angle_from_vl(self, paddleocr_vl_data: Dict) -> float:
- """从 PaddleOCR_VL 数据中获取旋转角度"""
- return BBoxExtractor._get_rotation_angle(paddleocr_vl_data)
-
- def _get_original_image_size_from_vl(self, paddleocr_vl_data: Dict) -> tuple:
- """从 PaddleOCR_VL 数据中获取原始图像尺寸"""
- return BBoxExtractor._get_original_image_size(paddleocr_vl_data)
-
- def _transform_vl_block_bbox(self, item: Dict, angle: float,
- orig_image_size: tuple) -> Dict:
- """
- 转换 PaddleOCR_VL 的 block_bbox 坐标
-
- Args:
- item: PaddleOCR_VL 的 block 数据
- angle: 旋转角度
- orig_image_size: 原始图像尺寸
-
- Returns:
- 转换后的 block 数据
- """
- transformed_item = item.copy()
-
- if 'block_bbox' not in item:
- return transformed_item
-
- block_bbox = item['block_bbox']
- if len(block_bbox) < 4:
- return transformed_item
-
- # block_bbox 格式: [x1, y1, x2, y2]
- # 转换为 poly 格式进行旋转
- poly = [
- [block_bbox[0], block_bbox[1]], # 左上
- [block_bbox[2], block_bbox[1]], # 右上
- [block_bbox[2], block_bbox[3]], # 右下
- [block_bbox[0], block_bbox[3]] # 左下
- ]
-
- # 🎯 使用 BBoxExtractor 的坐标转换方法
- transformed_poly = BBoxExtractor._inverse_rotate_coordinates(
- poly, angle, orig_image_size
- )
-
- # 转换回 bbox 格式
- xs = [p[0] for p in transformed_poly]
- ys = [p[1] for p in transformed_poly]
- transformed_bbox = [min(xs), min(ys), max(xs), max(ys)]
-
- transformed_item['block_bbox'] = transformed_bbox
-
- return transformed_item
-
- def _convert_paddleocr_vl_to_mineru(self, paddleocr_vl_item: Dict) -> Dict:
- """
- 🎯 将 PaddleOCR_VL 格式转换为 MinerU 格式
-
- 基于 PP-DocLayout_plus-L 的 20 种类别
- """
- block_label = paddleocr_vl_item.get('block_label', '')
-
- # 🎯 PP-DocLayout_plus-L 类别映射(共 20 种)
- label_map = {
- # 标题类(3种)
- 'paragraph_title': 'title',
- 'doc_title': 'title',
- 'figure_table_chart_title': 'title',
-
- # 文本类(9种)
- 'text': 'text',
- 'number': 'text',
- 'content': 'text',
- 'abstract': 'text',
- 'footnote': 'text',
- 'aside_text': 'text',
- 'algorithm': 'text',
- 'reference': 'text',
- 'reference_content': 'text',
-
- # 页眉页脚(2种)
- 'header': 'header',
- 'footer': 'footer',
-
- # 表格(1种)
- 'table': 'table',
-
- # 图片/图表(3种)
- 'image': 'image',
- 'chart': 'image',
- 'seal': 'image',
-
- # 公式(2种)
- 'formula': 'equation',
- 'formula_number': 'equation'
- }
-
- mineru_type = label_map.get(block_label, 'text')
-
- mineru_item = {
- 'type': mineru_type,
- 'bbox': paddleocr_vl_item.get('block_bbox', []),
- 'page_idx': 0
- }
-
- content = paddleocr_vl_item.get('block_content', '')
-
- if mineru_type == 'table':
- mineru_item['table_body'] = content
- else:
- mineru_item['text'] = content
-
- # 标题级别
- if block_label == 'doc_title':
- mineru_item['text_level'] = 1
- elif block_label == 'paragraph_title':
- mineru_item['text_level'] = 2
- elif block_label == 'figure_table_chart_title':
- mineru_item['text_level'] = 3
-
- return mineru_item
-
- def _process_table(self, item: Dict, paddle_text_boxes: List[Dict],
- start_pointer: int) -> Tuple[Dict, int]:
- """
- 处理表格类型(MinerU 格式)
-
- 策略:
- - 解析 HTML 表格
- - 为每个单元格匹配 PaddleOCR 的 bbox
- - 返回处理后的表格和新指针位置
- """
- table_body = item.get('table_body', '')
-
- if not table_body:
- print(f"⚠️ 表格内容为空,跳过")
- return item, start_pointer
-
- try:
- # 🔑 传入 table_bbox 用于筛选
- table_bbox = item.get('bbox') # MinerU 提供的表格边界
-
- enhanced_html, cells, new_pointer = self._enhance_table_html_with_bbox(
- table_body,
- paddle_text_boxes,
- start_pointer,
- table_bbox # ✅ 传入边界框
- )
-
- # 更新 item
- item['table_body'] = enhanced_html
- item['table_cells'] = cells
-
- # 统计信息
- matched_count = len(cells)
- total_cells = len(BeautifulSoup(table_body, 'html.parser').find_all(['td', 'th']))
-
- print(f" 表格单元格: {matched_count}/{total_cells} 匹配")
-
- return item, new_pointer
-
- except Exception as e:
- print(f"⚠️ 表格处理失败: {e}")
- import traceback
- traceback.print_exc()
- return item, start_pointer
-
- def _process_text(self, item: Dict, paddle_text_boxes: List[Dict],
- paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
- """处理文本"""
- merged_item = item.copy()
- text = item.get('text', '')
-
- matched_bbox, paddle_pointer, last_matched_index = \
- self.text_matcher.find_matching_bbox(
- text, paddle_text_boxes, paddle_pointer, last_matched_index,
- self.look_ahead_window
- )
-
- if matched_bbox:
- matched_bbox['used'] = True
-
- return merged_item, paddle_pointer, last_matched_index
-
- def _process_list(self, item: Dict, paddle_text_boxes: List[Dict],
- paddle_pointer: int, last_matched_index: int) -> Tuple[Dict, int, int]:
- """处理列表"""
- merged_item = item.copy()
- list_items = item.get('list_items', [])
-
- for list_item in list_items:
- matched_bbox, paddle_pointer, last_matched_index = \
- self.text_matcher.find_matching_bbox(
- list_item, paddle_text_boxes, paddle_pointer, last_matched_index,
- self.look_ahead_window
- )
-
- if matched_bbox:
- matched_bbox['used'] = True
-
- return merged_item, paddle_pointer, last_matched_index
-
- def _enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
- start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
- """
- 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
-
- 策略:
- 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
- 2. 将筛选后的 boxes 按行分组
- 3. 智能匹配 HTML 行与 paddle 行组
- 4. 在匹配的组内查找单元格
-
- Args:
- html: HTML 表格
- paddle_text_boxes: 全部 paddle OCR 结果
- start_pointer: 开始位置
- table_bbox: 表格边界框 [x1, y1, x2, y2]
- """
- soup = BeautifulSoup(html, 'html.parser')
- cells = []
-
- # 🔑 第一步:筛选表格区域内的 paddle boxes
- table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
- paddle_text_boxes[start_pointer:],
- table_bbox,
- html
- )
-
- if not table_region_boxes:
- print(f"⚠️ 未在表格区域找到 paddle boxes")
- return str(soup), cells, start_pointer
-
- print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
- print(f" 边界: {actual_table_bbox}")
-
- # 🔑 第二步:将表格区域的 boxes 按行分组
- grouped_boxes = self._group_paddle_boxes_by_rows(
- table_region_boxes,
- y_tolerance=20
- )
-
- # 🔑 第三步:在每组内按 x 坐标排序
- for group in grouped_boxes:
- group['boxes'].sort(key=lambda x: x['bbox'][0])
-
- grouped_boxes.sort(key=lambda g: g['y_center'])
-
- print(f" 分组: {len(grouped_boxes)} 行")
-
- # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
- html_rows = soup.find_all('tr')
- row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
-
- print(f" HTML行: {len(html_rows)} 行")
- print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
-
- # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
- for row_idx, row in enumerate(html_rows):
- group_indices = row_mapping.get(row_idx, [])
-
- if not group_indices:
- continue
-
- # 合并多个组的 boxes
- current_boxes = []
- for group_idx in group_indices:
- if group_idx < len(grouped_boxes):
- current_boxes.extend(grouped_boxes[group_idx]['boxes'])
-
- current_boxes.sort(key=lambda x: x['bbox'][0])
-
- # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
- html_cells = row.find_all(['td', 'th'])
-
- if not html_cells:
- continue
-
- # 🔑 预估列边界(基于 x 坐标分布)
- col_boundaries = self._estimate_column_boundaries(
- current_boxes,
- len(html_cells)
- )
-
- print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
-
- # 🎯 关键改进:顺序指针匹配
- box_pointer = 0 # 当前行的 boxes 指针
-
- for col_idx, cell in enumerate(html_cells):
- cell_text = cell.get_text(strip=True)
-
- if not cell_text:
- continue
-
- # 🔑 从当前指针开始匹配
- matched_result = self._match_cell_sequential(
- cell_text,
- current_boxes,
- col_boundaries,
- box_pointer
- )
-
- if matched_result:
- merged_bbox = matched_result['bbox']
- merged_text = matched_result['text']
-
- cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
- cell['data-score'] = f"{matched_result['score']:.4f}"
- cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
-
- cells.append({
- 'type': 'table_cell',
- 'text': cell_text,
- 'matched_text': merged_text,
- 'bbox': merged_bbox,
- 'row': row_idx + 1,
- 'col': col_idx + 1,
- 'score': matched_result['score'],
- 'paddle_bbox_indices': matched_result['paddle_indices']
- })
-
- # 标记已使用
- for box in matched_result['used_boxes']:
- box['used'] = True
-
- # 🎯 移动指针到最后使用的 box 之后
- box_pointer = matched_result['last_used_index'] + 1
-
- print(f" 列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})")
-
- # 计算新的指针位置
- used_count = sum(1 for box in table_region_boxes if box.get('used'))
- new_pointer = start_pointer + used_count
-
- print(f" 匹配: {len(cells)} 个单元格")
-
- return str(soup), cells, new_pointer
- def _estimate_column_boundaries(self, boxes: List[Dict],
- num_cols: int) -> List[Tuple[int, int]]:
- """
- 估算列边界(改进版:处理同列多文本框)
-
- Args:
- boxes: 当前行的所有 boxes(已按 x 排序)
- num_cols: HTML 表格的列数
-
- Returns:
- 列边界列表 [(x_start, x_end), ...]
- """
- if not boxes:
- return []
-
- # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
- x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance)
-
- print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
-
- # 获取所有 x 坐标范围
- x_min = min(cluster['x_min'] for cluster in x_clusters)
- x_max = max(cluster['x_max'] for cluster in x_clusters)
-
- # 🎯 策略 1: 如果聚类数量<=列数接近
- if len(x_clusters) <= num_cols:
- # 直接使用聚类边界
- boundaries = [(cluster['x_min'], cluster['x_max'])
- for cluster in x_clusters]
- return boundaries
-
- # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇)
- if len(x_clusters) > num_cols:
- print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
-
- # 合并相近的簇
- merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
-
- boundaries = [(cluster['x_min'], cluster['x_max'])
- for cluster in merged_clusters]
- return boundaries
-
- return []
- def _cluster_boxes_by_x(self, boxes: List[Dict],
- x_tolerance: int = 3) -> List[Dict]:
- """
- 按 x 坐标聚类(合并同列的多个文本框)
-
- Args:
- boxes: 文本框列表
- x_tolerance: X坐标容忍度
-
- Returns:
- 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
- """
- if not boxes:
- return []
-
- # 按左边界 x 坐标排序
- sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
-
- clusters = []
- current_cluster = None
-
- for box in sorted_boxes:
- bbox = box['bbox']
- x_start = bbox[0]
- x_end = bbox[2]
-
- if current_cluster is None:
- # 开始新簇
- current_cluster = {
- 'x_min': x_start,
- 'x_max': x_end,
- 'boxes': [box]
- }
- else:
- # 🔑 检查是否属于当前簇(修正后的逻辑)
- # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min
- # 2. 或者距离在容忍度内
-
- has_overlap = (x_start <= current_cluster['x_max'] and
- x_end >= current_cluster['x_min'])
-
- is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance
-
- if has_overlap or is_close:
- # 合并到当前簇
- current_cluster['boxes'].append(box)
- current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
- current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
- else:
- # 保存当前簇,开始新簇
- clusters.append(current_cluster)
- current_cluster = {
- 'x_min': x_start,
- 'x_max': x_end,
- 'boxes': [box]
- }
-
- # 添加最后一簇
- if current_cluster:
- clusters.append(current_cluster)
-
- return clusters
- def _merge_close_clusters(self, clusters: List[Dict],
- target_count: int) -> List[Dict]:
- """
- 合并相近的簇,直到数量等于目标列数
-
- Args:
- clusters: 聚类列表
- target_count: 目标列数
-
- Returns:
- 合并后的聚类列表
- """
- if len(clusters) <= target_count:
- return clusters
-
- # 复制一份,避免修改原数据
- working_clusters = [c.copy() for c in clusters]
-
- while len(working_clusters) > target_count:
- # 找到距离最近的两个簇
- min_distance = float('inf')
- merge_idx = 0
-
- for i in range(len(working_clusters) - 1):
- distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
- if distance < min_distance:
- min_distance = distance
- merge_idx = i
-
- # 合并
- cluster1 = working_clusters[merge_idx]
- cluster2 = working_clusters[merge_idx + 1]
-
- merged_cluster = {
- 'x_min': cluster1['x_min'],
- 'x_max': cluster2['x_max'],
- 'boxes': cluster1['boxes'] + cluster2['boxes']
- }
-
- # 替换
- working_clusters[merge_idx] = merged_cluster
- working_clusters.pop(merge_idx + 1)
-
- return working_clusters
- def _get_boxes_in_column(self, boxes: List[Dict],
- boundaries: List[Tuple[int, int]],
- col_idx: int) -> List[Dict]:
- """
- 获取指定列范围内的 boxes(改进版:包含重叠)
-
- Args:
- boxes: 当前行的所有 boxes
- boundaries: 列边界
- col_idx: 列索引
-
- Returns:
- 该列的 boxes
- """
- if col_idx >= len(boundaries):
- return []
-
- x_start, x_end = boundaries[col_idx]
-
- col_boxes = []
- for box in boxes:
- bbox = box['bbox']
- box_x_start = bbox[0]
- box_x_end = bbox[2]
-
- # 🔑 改进:检查是否有重叠(不只是中心点)
- overlap = not (box_x_start > x_end or box_x_end < x_start)
-
- if overlap:
- col_boxes.append(box)
-
- return col_boxes
- def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
- table_bbox: Optional[List[int]],
- html: str) -> Tuple[List[Dict], List[int]]:
- """
- 筛选表格区域内的 paddle boxes
-
- 策略:
- 1. 如果有 table_bbox,使用边界框筛选(扩展边界)
- 2. 如果没有 table_bbox,通过内容匹配推断区域
-
- Args:
- paddle_boxes: paddle OCR 结果
- table_bbox: 表格边界框 [x1, y1, x2, y2]
- html: HTML 内容(用于内容验证)
-
- Returns:
- (筛选后的 boxes, 实际表格边界框)
- """
- if not paddle_boxes:
- return [], [0, 0, 0, 0]
-
- # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
- if table_bbox and len(table_bbox) == 4:
- x1, y1, x2, y2 = table_bbox
-
- # 扩展边界(考虑边框外的文本)
- margin = 20
- expanded_bbox = [
- max(0, x1 - margin),
- max(0, y1 - margin),
- x2 + margin,
- y2 + margin
- ]
-
- filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- # 中心点在扩展区域内
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- filtered.append(box)
-
- if filtered:
- # 计算实际边界框
- actual_bbox = [
- min(b['bbox'][0] for b in filtered),
- min(b['bbox'][1] for b in filtered),
- max(b['bbox'][2] for b in filtered),
- max(b['bbox'][3] for b in filtered)
- ]
- return filtered, actual_bbox
-
- # 🎯 策略 2: 通过内容匹配推断区域
- print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
-
- # 提取 HTML 中的所有文本
- from bs4 import BeautifulSoup
- soup = BeautifulSoup(html, 'html.parser')
- html_texts = set()
- for cell in soup.find_all(['td', 'th']):
- text = cell.get_text(strip=True)
- if text:
- html_texts.add(self.text_matcher.normalize_text(text))
-
- if not html_texts:
- return [], [0, 0, 0, 0]
-
- # 找出与 HTML 内容匹配的 boxes
- matched_boxes = []
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- # 检查是否匹配
- if any(normalized_text in ht or ht in normalized_text
- for ht in html_texts):
- matched_boxes.append(box)
-
- if not matched_boxes:
- # 🔑 降级:如果精确匹配失败,使用模糊匹配
- print(" ℹ️ 精确匹配失败,尝试模糊匹配...")
-
- from fuzzywuzzy import fuzz
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- for ht in html_texts:
- similarity = fuzz.partial_ratio(normalized_text, ht)
- if similarity >= 70: # 降低阈值
- matched_boxes.append(box)
- break
-
- if matched_boxes:
- # 计算边界框
- actual_bbox = [
- min(b['bbox'][0] for b in matched_boxes),
- min(b['bbox'][1] for b in matched_boxes),
- max(b['bbox'][2] for b in matched_boxes),
- max(b['bbox'][3] for b in matched_boxes)
- ]
-
- # 🔑 扩展边界,包含可能遗漏的文本
- margin = 30
- expanded_bbox = [
- max(0, actual_bbox[0] - margin),
- max(0, actual_bbox[1] - margin),
- actual_bbox[2] + margin,
- actual_bbox[3] + margin
- ]
-
- # 重新筛选(包含边界上的文本)
- final_filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- final_filtered.append(box)
-
- return final_filtered, actual_bbox
-
- # 🔑 最后的降级:返回所有 boxes
- print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes")
- if paddle_boxes:
- actual_bbox = [
- min(b['bbox'][0] for b in paddle_boxes),
- min(b['bbox'][1] for b in paddle_boxes),
- max(b['bbox'][2] for b in paddle_boxes),
- max(b['bbox'][3] for b in paddle_boxes)
- ]
- return paddle_boxes, actual_bbox
-
- return [], [0, 0, 0, 0]
- def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict],
- y_tolerance: int = 20) -> List[Dict]:
- """
- 将 paddle_text_boxes 按 y 坐标分组(聚类)
-
- Args:
- paddle_boxes: Paddle OCR 文字框列表
- y_tolerance: Y 坐标容忍度(像素)
-
- Returns:
- 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
- """
- if not paddle_boxes:
- return []
-
- # 计算每个 box 的中心 y 坐标
- boxes_with_y = []
- for box in paddle_boxes:
- bbox = box['bbox']
- y_center = (bbox[1] + bbox[3]) / 2
- boxes_with_y.append({
- 'y_center': y_center,
- 'box': box
- })
-
- # 按 y 坐标排序
- boxes_with_y.sort(key=lambda x: x['y_center'])
-
- # 聚类
- groups = []
- current_group = None
-
- for item in boxes_with_y:
- if current_group is None:
- # 开始新组
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
- else:
- # 检查是否属于当前组
- if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
- current_group['boxes'].append(item['box'])
- # 更新组的中心(使用平均值)
- current_group['y_center'] = sum(
- b['bbox'][1] + b['bbox'][3] for b in current_group['boxes']
- ) / (2 * len(current_group['boxes']))
- else:
- # 保存当前组,开始新组
- groups.append(current_group)
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
-
- # 添加最后一组
- if current_group:
- groups.append(current_group)
-
- return groups
- def _match_html_rows_to_paddle_groups(self, html_rows: List,
- grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
- """
- 智能匹配 HTML 行与 paddle 分组(改进版:处理跨行文本)
- 策略:
- 1. 第一遍:基于内容精确匹配
- 2. 第二遍:将未使用的组合并到相邻已匹配的行
- """
- if not html_rows or not grouped_boxes:
- return {}
-
- mapping = {}
-
- # 🎯 策略 1: 数量相等,简单 1:1 映射
- if len(html_rows) == len(grouped_boxes):
- for i in range(len(html_rows)):
- mapping[i] = [i]
- return mapping
-
- # 🎯 策略 2: 第一遍 - 基于内容精确匹配
- used_groups = set()
-
- for row_idx, row in enumerate(html_rows):
- row_texts = [cell.get_text(strip=True) for cell in row.find_all(['td', 'th'])]
- row_texts = [t for t in row_texts if t]
-
- if not row_texts:
- mapping[row_idx] = []
- continue
-
- row_text_normalized = [self.text_matcher.normalize_text(t) for t in row_texts]
-
- # 查找最匹配的 paddle 组
- best_groups = []
- best_score = 0
-
- # 尝试匹配单个组
- for group_idx, group in enumerate(grouped_boxes):
- if group_idx in used_groups:
- continue
-
- group_texts = [self.text_matcher.normalize_text(b['text'])
- for b in group['boxes'] if not b.get('used')]
-
- match_count = sum(1 for rt in row_text_normalized
- if any(rt in gt or gt in rt for gt in group_texts))
-
- coverage = match_count / len(row_texts) if row_texts else 0
-
- if coverage > best_score:
- best_score = coverage
- best_groups = [group_idx]
-
- # 🔑 如果单组匹配度不高,尝试匹配多个连续组
- if best_score < 0.5:
- # 从当前位置向后查找
- start_group = min([g for g in range(len(grouped_boxes)) if g not in used_groups],
- default=0)
- combined_texts = []
- combined_groups = []
-
- for group_idx in range(start_group, min(start_group + 5, len(grouped_boxes))):
- if group_idx in used_groups:
- continue
-
- combined_groups.append(group_idx)
- combined_texts.extend([
- self.text_matcher.normalize_text(b['text'])
- for b in grouped_boxes[group_idx]['boxes']
- if not b.get('used')
- ])
-
- match_count = sum(1 for rt in row_text_normalized
- if any(rt in gt or gt in rt for gt in combined_texts))
- coverage = match_count / len(row_texts) if row_texts else 0
-
- if coverage > best_score:
- best_score = coverage
- best_groups = combined_groups.copy()
-
- # 记录映射
- if best_groups and best_score > 0.3:
- mapping[row_idx] = best_groups
- used_groups.update(best_groups)
- else:
- # 降级策略:位置推测
- estimated_group = min(row_idx, len(grouped_boxes) - 1)
- if estimated_group not in used_groups:
- mapping[row_idx] = [estimated_group]
- used_groups.add(estimated_group)
- else:
- mapping[row_idx] = []
-
- # 🎯 策略 3: 第二遍 - 处理未使用的组(关键!)
- unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
-
- if unused_groups:
- print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
-
- # 🔑 将未使用的组合并到相邻的已匹配行
- for unused_idx in unused_groups:
- # 🎯 关键改进:计算与相邻行的边界距离
- unused_group = grouped_boxes[unused_idx]
- unused_y_min = min(b['bbox'][1] for b in unused_group['boxes'])
- unused_y_max = max(b['bbox'][3] for b in unused_group['boxes'])
-
- # 🔑 查找上方和下方最近的已使用组
- above_idx = None
- below_idx = None
- above_distance = float('inf')
- below_distance = float('inf')
-
- # 向上查找
- for i in range(unused_idx - 1, -1, -1):
- if i in used_groups:
- above_idx = i
- # 🎯 边界距离:unused 的最小 y - above 的最大 y
- above_group = grouped_boxes[i]
- max_y_box = max(
- above_group['boxes'],
- key=lambda b: b['bbox'][3]
- )
- above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2
- above_distance = abs(unused_y_min - above_y_center)
- print(f" • 组 {unused_idx} 与上方组 {i} 距离: {above_distance:.1f}px")
- break
-
- # 向下查找
- for i in range(unused_idx + 1, len(grouped_boxes)):
- if i in used_groups:
- below_idx = i
- # 🎯 边界距离:below 的最小 y - unused 的最大 y
- below_group = grouped_boxes[i]
- min_y_box = min(
- below_group['boxes'],
- key=lambda b: b['bbox'][1]
- )
- below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2
- below_distance = abs(below_y_center - unused_y_max)
- print(f" • 组 {unused_idx} 与下方组 {i} 距离: {below_distance:.1f}px")
- break
-
- # 🎯 选择距离更近的一侧
- if above_idx is not None and below_idx is not None:
- # 都存在,选择距离更近的
- if above_distance < below_distance:
- closest_used_idx = above_idx
- merge_direction = "上方"
- else:
- closest_used_idx = below_idx
- merge_direction = "下方"
- print(f" ✓ 组 {unused_idx} 选择合并到{merge_direction}组 {closest_used_idx}")
- elif above_idx is not None:
- closest_used_idx = above_idx
- merge_direction = "上方"
- elif below_idx is not None:
- closest_used_idx = below_idx
- merge_direction = "下方"
- else:
- print(f" ⚠️ 组 {unused_idx} 无相邻已使用组,跳过")
- continue
-
- # 🔑 找到该组对应的 HTML 行
- target_html_row = None
- for html_row_idx, group_indices in mapping.items():
- if closest_used_idx in group_indices:
- target_html_row = html_row_idx
- break
-
- if target_html_row is not None:
- # 🎯 根据合并方向决定目标行
- if merge_direction == "上方":
- # 合并到上方对应的 HTML 行
- if target_html_row in mapping:
- if unused_idx not in mapping[target_html_row]:
- mapping[target_html_row].append(unused_idx)
- print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(上方行)")
- else:
- # 合并到下方对应的 HTML 行
- if target_html_row in mapping:
- if unused_idx not in mapping[target_html_row]:
- mapping[target_html_row].append(unused_idx)
- print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}(下方行)")
-
- used_groups.add(unused_idx)
-
- # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
- for row_idx in mapping:
- if mapping[row_idx]:
- mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
-
- return mapping
- def _match_cell_sequential(self, cell_text: str,
- boxes: List[Dict],
- col_boundaries: List[Tuple[int, int]],
- start_idx: int) -> Optional[Dict]:
- """
- 🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配
-
- 策略:
- 1. 找到第一个未使用的 box
- 2. 尝试单个 box 精确匹配
- 3. 如果失败,尝试合并多个 boxes
-
- Args:
- cell_text: HTML 单元格文本
- boxes: 候选 boxes(已按 x 坐标排序)
- col_boundaries: 列边界列表
- start_idx: 起始索引
-
- Returns:
- {'bbox': [x1,y1,x2,y2], 'text': str, 'score': float,
- 'paddle_indices': [idx1, idx2], 'used_boxes': [box1, box2],
- 'last_used_index': int}
- """
- from fuzzywuzzy import fuzz
-
- cell_text_normalized = self.text_matcher.normalize_text(cell_text)
-
- if len(cell_text_normalized) < 2:
- return None
-
- # 🔑 找到第一个未使用的 box
- first_unused_idx = start_idx
- while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'):
- first_unused_idx += 1
-
- if first_unused_idx >= len(boxes):
- return None
- # 🔑 策略 1: 单个 box 精确匹配
- for box in boxes[first_unused_idx:]:
- if box.get('used'):
- continue
-
- box_text = self.text_matcher.normalize_text(box['text'])
-
- if cell_text_normalized == box_text:
- return self._build_match_result([box], box['text'], 100.0, boxes.index(box))
-
- # 🔑 策略 2: 多个 boxes 合并匹配
- unused_boxes = [b for b in boxes if not b.get('used')]
- # 合并同列的 boxes 合并
- merged_bboxes = []
- for col_idx in range(len(col_boundaries)):
- combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx)
- if len(combo_boxes) > 0:
- sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0]))
- merged_text = ''.join([b['text'] for b in sorted_combo])
- merged_bboxes.append({
- 'text': merged_text,
- 'sorted_combo': sorted_combo
- })
- for box in merged_bboxes:
- # 1. 精确匹配
- merged_text_normalized = self.text_matcher.normalize_text(box['text'])
- if cell_text_normalized == merged_text_normalized:
- last_sort_idx = boxes.index(box['sorted_combo'][-1])
- return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx)
-
- # 2. 子串匹配
- is_substring = (cell_text_normalized in merged_text_normalized or
- merged_text_normalized in cell_text_normalized)
-
- # 3. 模糊匹配
- similarity = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
-
- # 🎯 子串匹配加分
- if is_substring:
- similarity = min(100, similarity + 10)
-
- if similarity >= self.text_matcher.similarity_threshold:
- print(f" ✓ 匹配成功: '{cell_text[:15]}' vs '{merged_text[:15]}' (相似度: {similarity})")
- return self._build_match_result(box['sorted_combo'], box['text'], similarity, start_idx)
-
- print(f" ✗ 匹配失败: '{cell_text[:15]}'")
- return None
- def _build_match_result(self, boxes: List[Dict], text: str,
- score: float, last_index: int) -> Dict:
- """构建匹配结果"""
- merged_bbox = [
- min(b['bbox'][0] for b in boxes),
- min(b['bbox'][1] for b in boxes),
- max(b['bbox'][2] for b in boxes),
- max(b['bbox'][3] for b in boxes)
- ]
-
- return {
- 'bbox': merged_bbox,
- 'text': text,
- 'score': score,
- 'paddle_indices': [b['paddle_bbox_index'] for b in boxes],
- 'used_boxes': boxes,
- 'last_used_index': last_index
- }
|