| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855 |
- import sys
- import time
- import re
- import difflib
- import json
- import argparse
- from typing import Dict, List, Tuple
- import markdown
- from bs4 import BeautifulSoup
- from fuzzywuzzy import fuzz
- class OCRResultComparator:
- def __init__(self):
- self.differences = []
- self.similarity_threshold = 85 # 相似度阈值,超过85%认为是匹配的
- self.max_paragraph_window = 6 # 最大合并段落数
-
- def normalize_text(self, text: str) -> str:
- """标准化文本:去除多余空格、回车等无效字符"""
- if not text:
- return ""
- # 去除多余的空白字符
- text = re.sub(r'\s+', ' ', text.strip())
- # 去除标点符号周围的空格
- text = re.sub(r'\s*([,。:;!?、])\s*', r'\1', text)
- return text
-
- def is_image_reference(self, text: str) -> bool:
- """判断是否为图片引用或描述"""
- image_keywords = [
- '图', '图片', '图像', 'image', 'figure', 'fig',
- '照片', '截图', '示意图', '流程图', '结构图'
- ]
- # 检查是否包含图片相关关键词
- for keyword in image_keywords:
- if keyword in text.lower():
- return True
-
- # 检查是否为Markdown图片语法
- if re.search(r'!\[.*?\]\(.*?\)', text):
- return True
-
- # 检查是否为HTML图片标签
- if re.search(r'<img[^>]*>', text, re.IGNORECASE):
- return True
-
- return False
-
- def extract_table_data(self, md_content: str) -> List[List[List[str]]]:
- """从Markdown中提取表格数据"""
- tables = []
-
- # 使用BeautifulSoup解析HTML表格
- soup = BeautifulSoup(md_content, 'html.parser')
- html_tables = soup.find_all('table')
-
- for table in html_tables:
- table_data = []
- rows = table.find_all('tr')
-
- for row in rows:
- cells = row.find_all(['td', 'th'])
- row_data = []
- for cell in cells:
- cell_text = self.normalize_text(cell.get_text())
- # 跳过图片内容
- if not self.is_image_reference(cell_text):
- row_data.append(cell_text)
- else:
- row_data.append("[图片内容-忽略]")
-
- if row_data: # 只添加非空行
- table_data.append(row_data)
-
- if table_data:
- tables.append(table_data)
-
- return tables
-
- def merge_split_paragraphs(self, lines: List[str]) -> List[str]:
- # 合并连续的非空行作为一个段落,且过滤图片内容
- merged_lines = []
- current_paragraph = ""
- for i, line in enumerate(lines):
- # 跳过空行
- if not line:
- if current_paragraph:
- merged_lines.append(current_paragraph)
- current_paragraph = ""
- continue
- # 跳过图片内容
- if self.is_image_reference(line):
- continue
- # 检查是否是标题(以数字、中文数字或特殊标记开头)
- is_title = (
- line.startswith(('一、', '二、', '三、', '四、', '五、', '六、', '七、', '八、', '九、', '十、')) or
- line.startswith(('1.', '2.', '3.', '4.', '5.', '6.', '7.', '8.', '9.')) or
- line.startswith('#')
- )
- # 如果是标题,结束当前段落
- if is_title:
- if current_paragraph:
- merged_lines.append(current_paragraph)
- current_paragraph = ""
- merged_lines.append(line)
- else:
- # 检查是否应该与前一行合并 # 如果当前段落不为空,且当前段落最后一个字符非空白字符
- if current_paragraph and not current_paragraph.endswith((' ', '\t')):
- current_paragraph += line
- else:
- current_paragraph = line
-
- # 处理最后一个段落
- if current_paragraph:
- merged_lines.append(current_paragraph)
-
- return merged_lines
- def extract_paragraphs(self, md_content: str) -> List[str]:
- """提取段落文本"""
- # 移除表格
- content = re.sub(r'<table>.*?</table>', '', md_content, flags=re.DOTALL)
- # 移除HTML标签
- content = re.sub(r'<[^>]+>', '', content)
- # 移除Markdown注释
- content = re.sub(r'<!--.*?-->', '', content, flags=re.DOTALL)
-
- # 分割段落
- paragraphs = []
- lines = content.split('\n')
- merged_lines = self.merge_split_paragraphs(lines)
-
- for line in merged_lines:
- normalized = self.normalize_text(line)
- if normalized:
- paragraphs.append(normalized)
- else:
- print(f"跳过的内容无效或图片段落: {line[0:30]}...")
-
- return paragraphs
-
- def compare_tables(self, table1: List[List[str]], table2: List[List[str]]) -> List[Dict]:
- """比较表格数据"""
- differences = []
-
- # 确定最大行数
- max_rows = max(len(table1), len(table2))
-
- for i in range(max_rows):
- row1 = table1[i] if i < len(table1) else []
- row2 = table2[i] if i < len(table2) else []
-
- # 确定最大列数
- max_cols = max(len(row1), len(row2))
-
- for j in range(max_cols):
- cell1 = row1[j] if j < len(row1) else ""
- cell2 = row2[j] if j < len(row2) else ""
-
- # 跳过图片内容比较
- if "[图片内容-忽略]" in cell1 or "[图片内容-忽略]" in cell2:
- continue
-
- if cell1 != cell2:
- # 特别处理数字金额
- if self.is_numeric(cell1) and self.is_numeric(cell2):
- num1 = self.parse_number(cell1)
- num2 = self.parse_number(cell2)
- if abs(num1 - num2) > 0.001: # 允许小数精度误差
- differences.append({
- 'type': 'table_amount',
- 'position': f'行{i+1}列{j+1}',
- 'file1_value': cell1,
- 'file2_value': cell2,
- 'description': f'金额不一致: {cell1} vs {cell2}',
- 'row_index': i,
- 'col_index': j
- })
- else:
- differences.append({
- 'type': 'table_text',
- 'position': f'行{i+1}列{j+1}',
- 'file1_value': cell1,
- 'file2_value': cell2,
- 'description': f'文本不一致: {cell1} vs {cell2}',
- 'row_index': i,
- 'col_index': j
- })
-
- return differences
-
- def is_numeric(self, text: str) -> bool:
- """判断文本是否为数字"""
- if not text:
- return False
- # 移除千分位分隔符和负号
- clean_text = re.sub(r'[,,-]', '', text)
- try:
- float(clean_text)
- return True
- except ValueError:
- return False
-
- def parse_number(self, text: str) -> float:
- """解析数字"""
- if not text:
- return 0.0
- clean_text = re.sub(r'[,,]', '', text)
- try:
- return float(clean_text)
- except ValueError:
- return 0.0
-
- def normalize_text_for_comparison(self, text: str) -> str:
- """增强的文本标准化 - 用于语义比较"""
- if not text:
- return ""
-
- # 移除Markdown格式标记
- text = re.sub(r'#{1,6}\s*', '', text) # 移除标题标记
- text = re.sub(r'\*\*(.+?)\*\*', r'\1', text) # 移除粗体标记
- text = re.sub(r'\*(.+?)\*', r'\1', text) # 移除斜体标记
- text = re.sub(r'`(.+?)`', r'\1', text) # 移除代码标记
- text = re.sub(r'<!--.*?-->', '', text, flags=re.DOTALL) # 移除注释
-
- # 统一标点符号
- punctuation_map = {
- ',': ',', '。': '.', ':': ':', ';': ';',
- '!': '!', '?': '?', '(': '(', ')': ')',
- '【': '[', '】': ']', '《': '<', '》': '>',
- '"': '"', '"': '"', ''': "'", ''': "'",
- '、': ',', '…': '...'
- }
-
- for chinese_punct, english_punct in punctuation_map.items():
- text = text.replace(chinese_punct, english_punct)
-
- # 移除多余的空白字符
- text = re.sub(r'\s+', ' ', text.strip())
-
- # 移除标点符号周围的空格
- text = re.sub(r'\s*([,.():;!?])\s*', r'\1', text)
-
- return text
-
- def calculate_text_similarity(self, text1: str, text2: str) -> float:
- """改进的相似度计算"""
- if not text1 and not text2:
- return 100.0
- if not text1 or not text2:
- return 0.0
-
- # 如果标准化后完全相同,返回100%
- if text1 == text2:
- return 100.0
-
- # 使用多种相似度算法
- similarity_scores = [
- fuzz.ratio(text1, text2),
- fuzz.partial_ratio(text1, text2),
- fuzz.token_sort_ratio(text1, text2),
- fuzz.token_set_ratio(text1, text2)
- ]
-
- # 对于包含关系,给予更高的权重
- if text1 in text2 or text2 in text1:
- max_score = max(similarity_scores)
- # 提升包含关系的相似度
- return min(100.0, max_score + 10)
-
- return max(similarity_scores)
-
- def compare_paragraphs_with_flexible_matching(self, paras1: List[str], paras2: List[str]) -> List[Dict]:
- """改进的段落匹配算法 - 更好地处理段落重组"""
- differences = []
-
- # 直接调用normalize_text_for_comparison进行预处理
- meaningful_paras1 = [self.normalize_text_for_comparison(p) for p in paras1]
- meaningful_paras2 = [self.normalize_text_for_comparison(p) for p in paras2]
- # 使用预处理后的段落进行匹配
- used_paras1 = set()
- used_paras2 = set()
-
- best_match = {'similarity': 0.0} # 初始化best_match
- # 文件1和文件2同时向下遍历,当有匹配项时,文件2的窗口从匹配项的下一个位置开始
- paras2_idx = 0
- for window_size1 in range(1, min(self.max_paragraph_window, len(meaningful_paras1) + 1)): # 增加到6个段落
- for i in range(len(meaningful_paras1) - window_size1 + 1):
- if any(idx in used_paras1 for idx in range(i, i + window_size1)):
- continue
-
- # 合并文件1中的段落
- combined_para1 = "".join(meaningful_paras1[i:i+window_size1])
-
- # 在文件2中寻找最佳匹配
- best_match = self._find_best_match_in_paras2_improved(
- combined_para1,
- meaningful_paras2[paras2_idx: min(paras2_idx + self.max_paragraph_window, len(meaningful_paras2))],
- paras2_idx
- )
-
- if best_match and best_match['similarity'] >= self.similarity_threshold:
- paras2_idx = best_match['indices'][-1] + 1 # 更新文件2的起始索引
- # 记录匹配
- for idx in range(i, i + window_size1):
- used_paras1.add(idx)
- for idx in best_match['indices']:
- used_paras2.add(idx)
-
- # 只有当相似度明显不同时才记录差异
- if best_match['similarity'] < 95.0: # 提高阈值到95%
- severity = 'low' if best_match['similarity'] >= 90 else 'medium'
- differences.append({
- 'type': 'paragraph',
- 'position': f'段落{i+1}' + (f'-{i+window_size1}' if window_size1 > 1 else ''),
- 'file1_value': combined_para1,
- 'file2_value': best_match['text'],
- 'description': f'段落格式差异 (相似度: {best_match["similarity"]:.1f}%)',
- 'similarity': best_match['similarity'],
- 'severity': severity
- })
-
- if paras2_idx >= len(meaningful_paras2):
- break # 文件2已全部匹配完,退出
-
- # 处理未匹配的有意义段落
- for i, para in enumerate(meaningful_paras1):
- if i not in used_paras1:
- differences.append({
- 'type': 'paragraph',
- 'position': f'段落{i+1}',
- 'file1_value': para,
- 'file2_value': "",
- 'description': '文件1中独有的段落',
- 'similarity': 0.0,
- 'severity': 'medium'
- })
-
- for j, para in enumerate(meaningful_paras2):
- if j not in used_paras2:
- differences.append({
- 'type': 'paragraph',
- 'position': f'段落{j+1}',
- 'file1_value': "",
- 'file2_value': para,
- 'description': '文件2中独有的段落',
- 'similarity': 0.0,
- 'severity': 'medium'
- })
-
- return differences
- def _find_best_match_in_paras2_improved(self, target_text: str, paras2: List[str],
- paras2_idx: int) -> Dict:
- """改进的段落匹配方法"""
- best_match = None
-
- for window_size in range(1, len(paras2) + 1):
- for j in range(len(paras2) - window_size + 1):
- combined_para2 = "".join(paras2[j:j+window_size])
- similarity = self.calculate_text_similarity(target_text, combined_para2)
- if best_match and best_match['similarity'] == 100.0:
- break # 找到完美匹配,提前退出
-
- if not best_match or similarity > best_match['similarity']:
- best_match = {
- 'text': combined_para2,
- 'similarity': similarity,
- 'indices': list(range(j + paras2_idx, j + paras2_idx + window_size))
- }
- if best_match and best_match['similarity'] == 100.0:
- break # 找到完美匹配,提前退出
-
- # Return empty dict if no match found
- if best_match is None:
- return {
- 'text': '',
- 'similarity': 0.0,
- 'indices': []
- }
-
- return best_match
-
- def compare_files(self, file1_path: str, file2_path: str) -> Dict:
- """改进的文件比较方法"""
- # 读取文件
- with open(file1_path, 'r', encoding='utf-8') as f:
- content1 = f.read()
-
- with open(file2_path, 'r', encoding='utf-8') as f:
- content2 = f.read()
-
- # 提取表格和段落
- tables1 = self.extract_table_data(content1)
- tables2 = self.extract_table_data(content2)
-
- paras1 = self.extract_paragraphs(content1)
- paras2 = self.extract_paragraphs(content2)
-
- # 比较结果
- all_differences = []
-
- # 比较表格 (保持原有逻辑)
- if tables1 and tables2:
- table_diffs = self.compare_tables(tables1[0], tables2[0])
- all_differences.extend(table_diffs)
- elif tables1 and not tables2:
- all_differences.append({
- 'type': 'table_structure',
- 'position': '表格结构',
- 'file1_value': f'包含{len(tables1)}个表格',
- 'file2_value': '无表格',
- 'description': '文件1包含表格但文件2无表格',
- 'severity': 'high'
- })
- elif not tables1 and tables2:
- all_differences.append({
- 'type': 'table_structure',
- 'position': '表格结构',
- 'file1_value': '无表格',
- 'file2_value': f'包含{len(tables2)}个表格',
- 'description': '文件2包含表格但文件1无表格',
- 'severity': 'high'
- })
-
- # 使用增强的段落比较
- para_diffs = self.compare_paragraphs_with_flexible_matching(paras1, paras2)
- all_differences.extend(para_diffs)
-
- # # 生成unified diff报告
- # unified_diff_data = self.generate_unified_diff_report(
- # paras1, paras2, file1_path, file2_path,
- # "./output/pre_validation/unified_diff_comparison"
- # )
- # 统计信息
- stats = {
- 'total_differences': len(all_differences),
- 'table_differences': len([d for d in all_differences if d['type'].startswith('table')]),
- 'paragraph_differences': len([d for d in all_differences if d['type'] == 'paragraph']),
- 'amount_differences': len([d for d in all_differences if d['type'] == 'table_amount']),
- 'high_severity': len([d for d in all_differences if d.get('severity') == 'high']),
- 'medium_severity': len([d for d in all_differences if d.get('severity') == 'medium']),
- 'low_severity': len([d for d in all_differences if d.get('severity') == 'low'])
- }
-
- # 在返回结果中添加unified diff数据
- result = {
- 'differences': all_differences,
- 'statistics': stats,
- 'file1_tables': len(tables1),
- 'file2_tables': len(tables2),
- 'file1_paragraphs': len(paras1),
- 'file2_paragraphs': len(paras2),
- 'file1_path': file1_path,
- 'file2_path': file2_path,
- # 'unified_diff': unified_diff_data # 添加unified diff数据
- }
-
- return result
- def generate_unified_diff(self, paras1: List[str], paras2: List[str], file1_path: str, file2_path: str) -> Dict:
- """
- 生成类似git diff的统一差异格式,并返回结构化数据
- """
- # 直接调用normalize_text_for_comparison进行预处理
- file1_lines = [self.normalize_text_for_comparison(p) for p in paras1]
- file2_lines = [self.normalize_text_for_comparison(p) for p in paras2]
- # 使用unified_diff生成差异
- diff = difflib.unified_diff(
- file1_lines,
- file2_lines,
- fromfile=file1_path,
- tofile=file2_path,
- lineterm='' # 确保每行末尾不添加额外字符
- )
-
- # 将差异生成器转换为列表
- diff_output = list(diff)
-
- # 解析diff输出并生成结构化数据
- structured_diff = self._parse_unified_diff(diff_output, file1_lines, file2_lines, file1_path, file2_path)
-
- return structured_diff
- def _parse_unified_diff(self, diff_lines: List[str], file1_lines: List[str], file2_lines: List[str],
- file1_path: str, file2_path: str) -> Dict:
- """解析unified diff输出并生成结构化数据"""
- differences = []
- current_hunk = None
- file1_line_num = 0
- file2_line_num = 0
-
- for line in diff_lines:
- if line.startswith('---') or line.startswith('+++'):
- continue
- elif line.startswith('@@'):
- # 解析hunk头部,例如: @@ -1,5 +1,4 @@
- import re
- match = re.match(r'@@ -(\d+)(?:,(\d+))? \+(\d+)(?:,(\d+))? @@', line)
- if match:
- file1_start = int(match.group(1))
- file1_count = int(match.group(2)) if match.group(2) else 1
- file2_start = int(match.group(3))
- file2_count = int(match.group(4)) if match.group(4) else 1
-
- current_hunk = {
- 'file1_start': file1_start,
- 'file1_count': file1_count,
- 'file2_start': file2_start,
- 'file2_count': file2_count
- }
- file1_line_num = file1_start - 1 # 转为0基索引
- file2_line_num = file2_start - 1
- elif line.startswith(' '):
- # 未改变的行
- file1_line_num += 1
- file2_line_num += 1
- elif line.startswith('-'):
- # 文件1中删除的行
- content = line[1:] # 去掉'-'前缀
- differences.append({
- 'type': 'paragraph',
- 'position': f'段落{file1_line_num + 1}',
- 'file1_value': content,
- 'file2_value': "",
- 'description': '文件1中独有的段落',
- 'similarity': 0.0,
- 'severity': 'medium',
- 'line_number': file1_line_num + 1,
- 'change_type': 'deletion'
- })
- file1_line_num += 1
- elif line.startswith('+'):
- # 文件2中添加的行
- content = line[1:] # 去掉'+'前缀
- differences.append({
- 'type': 'paragraph',
- 'position': f'段落{file2_line_num + 1}',
- 'file1_value': "",
- 'file2_value': content,
- 'description': '文件2中独有的段落',
- 'similarity': 0.0,
- 'severity': 'medium',
- 'line_number': file2_line_num + 1,
- 'change_type': 'addition'
- })
- file2_line_num += 1
-
- # 计算统计信息
- stats = {
- 'total_differences': len(differences),
- 'table_differences': 0, # diff不包含表格差异
- 'paragraph_differences': len(differences),
- 'amount_differences': 0,
- 'high_severity': len([d for d in differences if d.get('severity') == 'high']),
- 'medium_severity': len([d for d in differences if d.get('severity') == 'medium']),
- 'low_severity': len([d for d in differences if d.get('severity') == 'low']),
- 'deletions': len([d for d in differences if d.get('change_type') == 'deletion']),
- 'additions': len([d for d in differences if d.get('change_type') == 'addition'])
- }
-
- return {
- 'differences': differences,
- 'statistics': stats,
- 'file1_tables': 0,
- 'file2_tables': 0,
- 'file1_paragraphs': len(file1_lines),
- 'file2_paragraphs': len(file2_lines),
- 'file1_path': file1_path,
- 'file2_path': file2_path,
- 'diff_type': 'unified_diff'
- }
- def generate_unified_diff_report(self, paras1: List[str], paras2: List[str], file1_path: str, file2_path: str, output_file: str):
- """生成unified diff的JSON和Markdown报告"""
- # 生成结构化diff数据
- diff_data = self.generate_unified_diff(paras1, paras2, file1_path, file2_path)
-
- # 添加时间戳
- import datetime
- diff_data['timestamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
-
- # 生成JSON报告
- json_file = f"{output_file}_unified_diff.json"
- with open(json_file, 'w', encoding='utf-8') as f:
- json.dump(diff_data, f, ensure_ascii=False, indent=2)
-
- # 生成Markdown报告
- md_file = f"{output_file}_unified_diff.md"
- self._generate_unified_diff_markdown(diff_data, md_file)
-
- print(f"📄 Unified Diff JSON报告: {json_file}")
- print(f"📝 Unified Diff Markdown报告: {md_file}")
-
- return diff_data
- def _generate_unified_diff_markdown(self, diff_data: Dict, output_file: str):
- """生成unified diff的Markdown报告"""
- with open(output_file, 'w', encoding='utf-8') as f:
- f.write("# OCR结果Unified Diff对比报告\n\n")
-
- # 基本信息
- f.write("## 基本信息\n\n")
- f.write(f"- **文件1**: `{diff_data['file1_path']}`\n")
- f.write(f"- **文件2**: `{diff_data['file2_path']}`\n")
- f.write(f"- **比较时间**: {diff_data.get('timestamp', 'N/A')}\n")
- f.write(f"- **对比方式**: Unified Diff\n\n")
-
- # 统计信息
- stats = diff_data['statistics']
- f.write("## 统计信息\n\n")
- f.write(f"- 总差异数量: **{stats['total_differences']}**\n")
- f.write(f"- 删除行数: **{stats['deletions']}**\n")
- f.write(f"- 添加行数: **{stats['additions']}**\n")
- f.write(f"- 文件1段落数: {diff_data['file1_paragraphs']}\n")
- f.write(f"- 文件2段落数: {diff_data['file2_paragraphs']}\n\n")
-
- # 差异详情
- if diff_data['differences']:
- f.write("## 差异详情\n\n")
-
- # 按变更类型分组
- deletions = [d for d in diff_data['differences'] if d['change_type'] == 'deletion']
- additions = [d for d in diff_data['differences'] if d['change_type'] == 'addition']
-
- if deletions:
- f.write(f"### 🗑️ 删除内容 ({len(deletions)}项)\n\n")
- for i, diff in enumerate(deletions, 1):
- f.write(f"**{i}. 第{diff['line_number']}行**\n")
- f.write(f"```\n{diff['file1_value']}\n```\n\n")
-
- if additions:
- f.write(f"### ➕ 新增内容 ({len(additions)}项)\n\n")
- for i, diff in enumerate(additions, 1):
- f.write(f"**{i}. 第{diff['line_number']}行**\n")
- f.write(f"```\n{diff['file2_value']}\n```\n\n")
-
- # 详细差异表格
- f.write("## 详细差异列表\n\n")
- f.write("| 序号 | 类型 | 行号 | 变更类型 | 内容 | 描述 |\n")
- f.write("| --- | --- | --- | --- | --- | --- |\n")
-
- for i, diff in enumerate(diff_data['differences'], 1):
- change_icon = "🗑️" if diff['change_type'] == 'deletion' else "➕"
- content = diff['file1_value'] if diff['change_type'] == 'deletion' else diff['file2_value']
- f.write(f"| {i} | {change_icon} | {diff['line_number']} | {diff['change_type']} | ")
- f.write(f"`{content[:50]}{'...' if len(content) > 50 else ''}` | ")
- f.write(f"{diff['description']} |\n")
- else:
- f.write("## 结论\n\n")
- f.write("🎉 **完美匹配!没有发现任何差异。**\n\n")
-
- def generate_json_report(self, comparison_result: Dict, output_file: str):
- """生成JSON格式的比较报告"""
- # report_data = {
- # 'comparison_summary': {
- # 'timestamp': re.sub(r'[^\w\-_\.]', '_', str(comparison_result.get('timestamp', ''))),
- # 'file1': comparison_result['file1_path'],
- # 'file2': comparison_result['file2_path'],
- # 'statistics': comparison_result['statistics'],
- # 'file_info': {
- # 'file1_tables': comparison_result['file1_tables'],
- # 'file2_tables': comparison_result['file2_tables'],
- # 'file1_paragraphs': comparison_result['file1_paragraphs'],
- # 'file2_paragraphs': comparison_result['file2_paragraphs']
- # }
- # },
- # 'differences': comparison_result['differences']
- # }
-
- with open(output_file, 'w', encoding='utf-8') as f:
- json.dump(comparison_result, f, ensure_ascii=False, indent=2)
-
- def generate_markdown_report(self, comparison_result: Dict, output_file: str):
- """生成Markdown格式的比较报告"""
- with open(output_file, 'w', encoding='utf-8') as f:
- f.write("# OCR结果对比报告\n\n")
-
- # 基本信息
- f.write("## 基本信息\n\n")
- f.write(f"- **文件1**: `{comparison_result['file1_path']}`\n")
- f.write(f"- **文件2**: `{comparison_result['file2_path']}`\n")
- f.write(f"- **比较时间**: {comparison_result.get('timestamp', 'N/A')}\n\n")
-
- # 统计信息
- stats = comparison_result['statistics']
- f.write("## 统计信息\n\n")
- f.write(f"- 总差异数量: **{stats['total_differences']}**\n")
- f.write(f"- 表格差异: **{stats['table_differences']}**\n")
- f.write(f"- 金额差异: **{stats['amount_differences']}**\n")
- f.write(f"- 段落差异: **{stats['paragraph_differences']}**\n")
- f.write(f"- 文件1表格数: {comparison_result['file1_tables']}\n")
- f.write(f"- 文件2表格数: {comparison_result['file2_tables']}\n")
- f.write(f"- 文件1段落数: {comparison_result['file1_paragraphs']}\n")
- f.write(f"- 文件2段落数: {comparison_result['file2_paragraphs']}\n\n")
-
- # 差异摘要
- if stats['total_differences'] == 0:
- f.write("## 结论\n\n")
- f.write("🎉 **完美匹配!没有发现任何差异。**\n\n")
- else:
- f.write("## 差异摘要\n\n")
-
- # 按类型分组显示差异
- diff_by_type = {}
- for diff in comparison_result['differences']:
- diff_type = diff['type']
- if diff_type not in diff_by_type:
- diff_by_type[diff_type] = []
- diff_by_type[diff_type].append(diff)
-
- for diff_type, diffs in diff_by_type.items():
- type_name = {
- 'table_amount': '💰 表格金额差异',
- 'table_text': '📝 表格文本差异',
- 'paragraph': '📄 段落差异',
- 'table_structure': '🏗️ 表格结构差异'
- }.get(diff_type, f'❓ {diff_type}')
-
- f.write(f"### {type_name} ({len(diffs)}个)\n\n")
-
- for i, diff in enumerate(diffs, 1):
- f.write(f"**{i}. {diff['position']}**\n")
- f.write(f"- 文件1: `{diff['file1_value']}`\n")
- f.write(f"- 文件2: `{diff['file2_value']}`\n")
- f.write(f"- 说明: {diff['description']}\n\n")
-
- # 详细差异列表
- if comparison_result['differences']:
- f.write("## 详细差异列表\n\n")
- f.write("| 序号 | 类型 | 位置 | 文件1内容 | 文件2内容 | 描述 |\n")
- f.write("| --- | --- | --- | --- | --- | --- |\n")
-
- for i, diff in enumerate(comparison_result['differences'], 1):
- f.write(f"| {i} | {diff['type']} | {diff['position']} | ")
- f.write(f"`{diff['file1_value'][:50]}{'...' if len(diff['file1_value']) > 50 else ''}` | ")
- f.write(f"`{diff['file2_value'][:50]}{'...' if len(diff['file2_value']) > 50 else ''}` | ")
- f.write(f"{diff['description']} |\n")
- def compare_ocr_results(file1_path: str, file2_path: str, output_file: str = "comparison_report",
- output_format: str = "markdown", ignore_images: bool = True):
- """
- 比较两个OCR结果文件
-
- Args:
- file1_path: 第一个OCR结果文件路径
- file2_path: 第二个OCR结果文件路径
- output_file: 输出文件名(不含扩展名),默认为"comparison_report"
- output_format: 输出格式,选项: 'json', 'markdown', 'both',默认为'markdown'
- ignore_images: 是否忽略图片内容,默认为True
-
- Returns:
- Dict: 比较结果字典
- """
- comparator = OCRResultComparator()
-
- print("🔍 开始对比OCR结果...")
- print(f"📄 文件1: {file1_path}")
- print(f"📄 文件2: {file2_path}")
- print(f"📁 输出格式: {output_format}")
- print(f"🖼️ 图片处理: {'忽略' if ignore_images else '对比'}")
-
- try:
- # 执行比较
- result = comparator.compare_files(file1_path, file2_path)
-
- # 添加时间戳
- import datetime
- result['timestamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
-
- # 生成报告
- if output_format in ['json', 'both']:
- json_file = f"{output_file}.json"
- comparator.generate_json_report(result, json_file)
- print(f"📄 JSON报告已保存至: {json_file}")
-
- if output_format in ['markdown', 'both']:
- md_file = f"{output_file}.md"
- comparator.generate_markdown_report(result, md_file)
- print(f"📝 Markdown报告已保存至: {md_file}")
-
- # 打印简要结果
- print(f"\n📊 对比完成!")
- print(f" 总差异数: {result['statistics']['total_differences']}")
- print(f" 表格差异: {result['statistics']['table_differences']}")
- print(f" 金额差异: {result['statistics']['amount_differences']}")
- print(f" 段落差异: {result['statistics']['paragraph_differences']}")
-
- # 打印前几个重要差异
- if result['differences']:
- print(f"\n🔍 前3个重要差异:")
- for i, diff in enumerate(result['differences'][:3], 1):
- print(f" {i}. {diff['position']}: {diff['description']}")
- print(f" 文件1: '{diff['file1_value'][:50]}{'...' if len(diff['file1_value']) > 50 else ''}'")
- print(f" 文件2: '{diff['file2_value'][:50]}{'...' if len(diff['file2_value']) > 50 else ''}'")
- else:
- print(f"\n🎉 恭喜!两个文件内容完全一致!")
-
- # 添加处理统计信息(模仿 ocr_by_vlm.py 的风格)
- print("\n📊 对比处理统计")
- print(f" 文件1路径: {result['file1_path']}")
- print(f" 文件2路径: {result['file2_path']}")
- print(f" 输出文件: {output_file}")
- print(f" 输出格式: {output_format}")
- print(f" 忽略图片: {ignore_images}")
- print(f" 处理时间: {result['timestamp']}")
- print(f" 文件1表格数: {result['file1_tables']}")
- print(f" 文件2表格数: {result['file2_tables']}")
- print(f" 文件1段落数: {result['file1_paragraphs']}")
- print(f" 文件2段落数: {result['file2_paragraphs']}")
-
- return result
-
- except Exception as e:
- import traceback
- traceback.print_exc()
- raise Exception(f"OCR对比任务失败: {e}")
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='OCR结果对比工具')
- parser.add_argument('file1', nargs= '?', help='第一个OCR结果文件路径')
- parser.add_argument('file2', nargs= '?', help='第二个OCR结果文件路径')
- parser.add_argument('-o', '--output', default='comparison_report',
- help='输出文件名(不含扩展名)')
- parser.add_argument('-f', '--format', choices=['json', 'markdown', 'both'],
- default='markdown', help='输出格式: json, markdown, 或 both')
- parser.add_argument('--ignore-images', action='store_true',
- help='忽略图片内容(默认已启用)')
-
- args = parser.parse_args()
- if args.file1 and args.file2:
- result = compare_ocr_results(
- file1_path=args.file1,
- file2_path=args.file2,
- output_file=args.output,
- output_format=args.format,
- ignore_images=args.ignore_images
- )
- else:
- # 如果sys.argv没有被传入参数,则提供默认参数用于测试
- result = compare_ocr_results(
- file1_path='/Users/zhch158/workspace/data/至远彩色印刷工业有限公司/data_DotsOCR_Results/2023年度报告母公司_page_001.md',
- file2_path='./output/pre_validation/2023年度报告母公司_page_001.md',
- # output_file=f'./output/comparison_result_{time.strftime("%Y%m%d_%H%M%S")}',
- output_file=f'./output/pre_validation/2023年度报告母公司_page_001_comparison_result',
- output_format='both',
- ignore_images=True
- )
- print("\n🎉 OCR对比完成!")
|