| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173 |
- """
- 表格单元格匹配器
- 负责将 HTML 表格单元格与 PaddleOCR bbox 进行匹配
- """
- from typing import List, Dict, Tuple, Optional
- from bs4 import BeautifulSoup
- import numpy as np
- try:
- from rapidfuzz import fuzz
- except ImportError:
- from fuzzywuzzy import fuzz
- try:
- from .text_matcher import TextMatcher
- from .bbox_extractor import BBoxExtractor
- except ImportError:
- from text_matcher import TextMatcher
- from bbox_extractor import BBoxExtractor
- class TableCellMatcher:
- """表格单元格匹配器"""
-
- def __init__(self, text_matcher: TextMatcher,
- x_tolerance: int = 3,
- y_tolerance: int = 10,
- inclination_threshold: float = 0.3):
- """
- Args:
- text_matcher: 文本匹配器
- x_tolerance: X轴容差(用于列边界判断)
- y_tolerance: Y轴容差(用于行分组)
- """
- self.text_matcher = text_matcher
- self.x_tolerance = x_tolerance
- self.y_tolerance = y_tolerance
- self.inclination_threshold = inclination_threshold # 倾斜校正阈值(度数)
-
- def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
- start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
- """
- 为 HTML 表格添加 bbox 信息(优化版:先筛选表格区域)
-
- 策略:
- 1. 根据 table_bbox 筛选出表格区域内的 paddle_text_boxes
- 2. 将筛选后的 boxes 按行分组
- 3. 智能匹配 HTML 行与 paddle 行组
- 4. 在匹配的组内查找单元格
-
- Args:
- html: HTML 表格
- paddle_text_boxes: 全部 paddle OCR 结果
- start_pointer: 开始位置
- table_bbox: 表格边界框 [x1, y1, x2, y2]
- """
- soup = BeautifulSoup(html, 'html.parser')
- cells = []
-
- # 🔑 第一步:筛选表格区域内的 paddle boxes
- table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
- paddle_text_boxes[start_pointer:],
- table_bbox,
- html
- )
-
- if not table_region_boxes:
- print(f"⚠️ 未在表格区域找到 paddle boxes")
- return str(soup), cells, start_pointer
-
- print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
- print(f" 边界: {actual_table_bbox}")
-
- # 🔑 第二步:将表格区域的 boxes 按行分组
- grouped_boxes = self._group_paddle_boxes_by_rows(
- table_region_boxes,
- y_tolerance=self.y_tolerance,
- auto_correct_skew=True,
- inclination_threshold=self.inclination_threshold
- )
-
- # 🔑 第三步:在每组内按 x 坐标排序
- for group in grouped_boxes:
- group['boxes'].sort(key=lambda x: x['bbox'][0])
-
- grouped_boxes.sort(key=lambda g: g['y_center'])
-
- print(f" 分组: {len(grouped_boxes)} 行")
-
- # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
- html_rows = soup.find_all('tr')
- row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
-
- print(f" HTML行: {len(html_rows)} 行")
- print(f" 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
-
- # 🔑 第五步:遍历 HTML 表格,使用映射关系查找
- for row_idx, row in enumerate(html_rows):
- group_indices = row_mapping.get(row_idx, [])
-
- if not group_indices:
- continue
-
- # 合并多个组的 boxes
- current_boxes = []
- for group_idx in group_indices:
- if group_idx < len(grouped_boxes):
- current_boxes.extend(grouped_boxes[group_idx]['boxes'])
-
- current_boxes.sort(key=lambda x: x['bbox'][0])
-
- # 🎯 关键改进:提取 HTML 单元格并预先确定列边界
- html_cells = row.find_all(['td', 'th'])
-
- if not html_cells:
- continue
-
- # 🔑 预估列边界(基于 x 坐标分布)
- col_boundaries = self._estimate_column_boundaries(
- current_boxes,
- len(html_cells)
- )
-
- print(f" 行 {row_idx + 1}: {len(html_cells)} 列,边界: {col_boundaries}")
-
- # 🎯 关键改进:顺序指针匹配
- box_pointer = 0 # 当前行的 boxes 指针
-
- for col_idx, cell in enumerate(html_cells):
- cell_text = cell.get_text(strip=True)
-
- if not cell_text:
- continue
-
- # 🔑 从当前指针开始匹配
- matched_result = self._match_cell_sequential(
- cell_text,
- current_boxes,
- col_boundaries,
- box_pointer
- )
-
- if matched_result:
- merged_bbox = matched_result['bbox']
- merged_text = matched_result['text']
-
- cell['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
- cell['data-score'] = f"{matched_result['score']:.4f}"
- cell['data-paddle-indices'] = str(matched_result['paddle_indices'])
-
- cells.append({
- 'type': 'table_cell',
- 'text': cell_text,
- 'matched_text': merged_text,
- 'bbox': merged_bbox,
- 'row': row_idx + 1,
- 'col': col_idx + 1,
- 'score': matched_result['score'],
- 'paddle_bbox_indices': matched_result['paddle_indices']
- })
-
- # 标记已使用
- for box in matched_result['used_boxes']:
- box['used'] = True
-
- # 🎯 移动指针到最后使用的 box 之后
- box_pointer = matched_result['last_used_index'] + 1
-
- print(f" 列 {col_idx + 1}: '{cell_text[:20]}...' 匹配 {len(matched_result['used_boxes'])} 个box (指针: {box_pointer})")
-
- # 计算新的指针位置
- used_count = sum(1 for box in table_region_boxes if box.get('used'))
- new_pointer = start_pointer + used_count
-
- print(f" 匹配: {len(cells)} 个单元格")
-
- return str(soup), cells, new_pointer
- def _estimate_column_boundaries(self, boxes: List[Dict],
- num_cols: int) -> List[Tuple[int, int]]:
- """
- 估算列边界(改进版:处理同列多文本框)
-
- Args:
- boxes: 当前行的所有 boxes(已按 x 排序)
- num_cols: HTML 表格的列数
-
- Returns:
- 列边界列表 [(x_start, x_end), ...]
- """
- if not boxes:
- return []
-
- # 🔑 关键改进:先按 x 坐标聚类(合并同列的多个文本框)
- x_clusters = self._cluster_boxes_by_x(boxes, x_tolerance=self.x_tolerance)
-
- print(f" X聚类: {len(boxes)} 个boxes -> {len(x_clusters)} 个列簇")
-
- # 获取所有 x 坐标范围
- x_min = min(cluster['x_min'] for cluster in x_clusters)
- x_max = max(cluster['x_max'] for cluster in x_clusters)
-
- # 🎯 策略 1: 如果聚类数量<=列数接近
- if len(x_clusters) <= num_cols:
- # 直接使用聚类边界
- boundaries = [(cluster['x_min'], cluster['x_max'])
- for cluster in x_clusters]
- return boundaries
-
- # 🎯 策略 2: 聚类数多于列数(某些列有多个文本簇)
- if len(x_clusters) > num_cols:
- print(f" ℹ️ 聚类数 {len(x_clusters)} > 列数 {num_cols},合并相近簇")
-
- # 合并相近的簇
- merged_clusters = self._merge_close_clusters(x_clusters, num_cols)
-
- boundaries = [(cluster['x_min'], cluster['x_max'])
- for cluster in merged_clusters]
- return boundaries
-
- return []
- def _cluster_boxes_by_x(self, boxes: List[Dict],
- x_tolerance: int = 3) -> List[Dict]:
- """
- 按 x 坐标聚类(合并同列的多个文本框)
-
- Args:
- boxes: 文本框列表
- x_tolerance: X坐标容忍度
-
- Returns:
- 聚类列表 [{'x_min': int, 'x_max': int, 'boxes': List[Dict]}, ...]
- """
- if not boxes:
- return []
-
- # 按左边界 x 坐标排序
- sorted_boxes = sorted(boxes, key=lambda b: b['bbox'][0])
-
- clusters = []
- current_cluster = None
-
- for box in sorted_boxes:
- bbox = box['bbox']
- x_start = bbox[0]
- x_end = bbox[2]
-
- if current_cluster is None:
- # 开始新簇
- current_cluster = {
- 'x_min': x_start,
- 'x_max': x_end,
- 'boxes': [box]
- }
- else:
- # 🔑 检查是否属于当前簇(修正后的逻辑)
- # 1. x 坐标有重叠:x_start <= current_x_max 且 x_end >= current_x_min
- # 2. 或者距离在容忍度内
-
- has_overlap = (x_start <= current_cluster['x_max'] and
- x_end >= current_cluster['x_min'])
-
- is_close = abs(x_start - current_cluster['x_max']) <= x_tolerance
-
- if has_overlap or is_close:
- # 合并到当前簇
- current_cluster['boxes'].append(box)
- current_cluster['x_min'] = min(current_cluster['x_min'], x_start)
- current_cluster['x_max'] = max(current_cluster['x_max'], x_end)
- else:
- # 保存当前簇,开始新簇
- clusters.append(current_cluster)
- current_cluster = {
- 'x_min': x_start,
- 'x_max': x_end,
- 'boxes': [box]
- }
-
- # 添加最后一簇
- if current_cluster:
- clusters.append(current_cluster)
-
- return clusters
- def _merge_close_clusters(self, clusters: List[Dict],
- target_count: int) -> List[Dict]:
- """
- 合并相近的簇,直到数量等于目标列数
-
- Args:
- clusters: 聚类列表
- target_count: 目标列数
-
- Returns:
- 合并后的聚类列表
- """
- if len(clusters) <= target_count:
- return clusters
-
- # 复制一份,避免修改原数据
- working_clusters = [c.copy() for c in clusters]
-
- while len(working_clusters) > target_count:
- # 找到距离最近的两个簇
- min_distance = float('inf')
- merge_idx = 0
-
- for i in range(len(working_clusters) - 1):
- distance = working_clusters[i + 1]['x_min'] - working_clusters[i]['x_max']
- if distance < min_distance:
- min_distance = distance
- merge_idx = i
-
- # 合并
- cluster1 = working_clusters[merge_idx]
- cluster2 = working_clusters[merge_idx + 1]
-
- merged_cluster = {
- 'x_min': cluster1['x_min'],
- 'x_max': cluster2['x_max'],
- 'boxes': cluster1['boxes'] + cluster2['boxes']
- }
-
- # 替换
- working_clusters[merge_idx] = merged_cluster
- working_clusters.pop(merge_idx + 1)
-
- return working_clusters
- def _get_boxes_in_column(self, boxes: List[Dict],
- boundaries: List[Tuple[int, int]],
- col_idx: int) -> List[Dict]:
- """
- 获取指定列范围内的 boxes(改进版:包含重叠)
-
- Args:
- boxes: 当前行的所有 boxes
- boundaries: 列边界
- col_idx: 列索引
-
- Returns:
- 该列的 boxes
- """
- if col_idx >= len(boundaries):
- return []
-
- x_start, x_end = boundaries[col_idx]
-
- col_boxes = []
- for box in boxes:
- bbox = box['bbox']
- box_x_start = bbox[0]
- box_x_end = bbox[2]
-
- # 🔑 改进:检查是否有重叠(不只是中心点)
- overlap = not (box_x_start > x_end or box_x_end < x_start)
-
- if overlap:
- col_boxes.append(box)
-
- return col_boxes
- def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
- table_bbox: Optional[List[int]],
- html: str) -> Tuple[List[Dict], List[int]]:
- """
- 筛选表格区域内的 paddle boxes
-
- 策略:
- 1. 如果有 table_bbox,使用边界框筛选(扩展边界)
- 2. 如果没有 table_bbox,通过内容匹配推断区域
-
- Args:
- paddle_boxes: paddle OCR 结果
- table_bbox: 表格边界框 [x1, y1, x2, y2]
- html: HTML 内容(用于内容验证)
-
- Returns:
- (筛选后的 boxes, 实际表格边界框)
- """
- if not paddle_boxes:
- return [], [0, 0, 0, 0]
-
- # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
- if table_bbox and len(table_bbox) == 4:
- x1, y1, x2, y2 = table_bbox
-
- # 扩展边界(考虑边框外的文本)
- margin = 20
- expanded_bbox = [
- max(0, x1 - margin),
- max(0, y1 - margin),
- x2 + margin,
- y2 + margin
- ]
-
- filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- # 中心点在扩展区域内
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- filtered.append(box)
-
- if filtered:
- # 计算实际边界框
- actual_bbox = [
- min(b['bbox'][0] for b in filtered),
- min(b['bbox'][1] for b in filtered),
- max(b['bbox'][2] for b in filtered),
- max(b['bbox'][3] for b in filtered)
- ]
- return filtered, actual_bbox
-
- # 🎯 策略 2: 通过内容匹配推断区域
- print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
-
- # 提取 HTML 中的所有文本
- from bs4 import BeautifulSoup
- soup = BeautifulSoup(html, 'html.parser')
- html_texts = set()
- for cell in soup.find_all(['td', 'th']):
- text = cell.get_text(strip=True)
- if text:
- html_texts.add(self.text_matcher.normalize_text(text))
-
- if not html_texts:
- return [], [0, 0, 0, 0]
-
- # 找出与 HTML 内容匹配的 boxes
- matched_boxes = []
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- # 检查是否匹配
- if any(normalized_text in ht or ht in normalized_text
- for ht in html_texts):
- matched_boxes.append(box)
-
- if not matched_boxes:
- # 🔑 降级:如果精确匹配失败,使用模糊匹配
- print(" ℹ️ 精确匹配失败,尝试模糊匹配...")
-
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- for ht in html_texts:
- similarity = fuzz.partial_ratio(normalized_text, ht)
- if similarity >= 70: # 降低阈值
- matched_boxes.append(box)
- break
-
- if matched_boxes:
- # 计算边界框
- actual_bbox = [
- min(b['bbox'][0] for b in matched_boxes),
- min(b['bbox'][1] for b in matched_boxes),
- max(b['bbox'][2] for b in matched_boxes),
- max(b['bbox'][3] for b in matched_boxes)
- ]
-
- # 🔑 扩展边界,包含可能遗漏的文本
- margin = 30
- expanded_bbox = [
- max(0, actual_bbox[0] - margin),
- max(0, actual_bbox[1] - margin),
- actual_bbox[2] + margin,
- actual_bbox[3] + margin
- ]
-
- # 重新筛选(包含边界上的文本)
- final_filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- final_filtered.append(box)
-
- return final_filtered, actual_bbox
-
- # 🔑 最后的降级:返回所有 boxes
- print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes")
- if paddle_boxes:
- actual_bbox = [
- min(b['bbox'][0] for b in paddle_boxes),
- min(b['bbox'][1] for b in paddle_boxes),
- max(b['bbox'][2] for b in paddle_boxes),
- max(b['bbox'][3] for b in paddle_boxes)
- ]
- return paddle_boxes, actual_bbox
-
- return [], [0, 0, 0, 0]
- def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict],
- y_tolerance: int = 10,
- auto_correct_skew: bool = True,
- inclination_threshold: float = 0.3) -> List[Dict]:
- """
- 将 paddle_text_boxes 按 y 坐标分组(聚类)- 增强版本
-
- Args:
- paddle_boxes: Paddle OCR 文字框列表
- y_tolerance: Y 坐标容忍度(像素)
- auto_correct_skew: 是否自动校正倾斜
-
- Returns:
- 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
- """
- if not paddle_boxes:
- return []
-
- # 🎯 步骤 1: 检测并校正倾斜(使用 BBoxExtractor)
- if auto_correct_skew:
- rotation_angle = BBoxExtractor.calculate_skew_angle(paddle_boxes)
-
- if abs(rotation_angle) > inclination_threshold:
- max_x = max(box['bbox'][2] for box in paddle_boxes)
- max_y = max(box['bbox'][3] for box in paddle_boxes)
- image_size = (max_x, max_y)
-
- print(f" 🔧 校正倾斜角度: {rotation_angle:.2f}°")
- paddle_boxes = BBoxExtractor.correct_boxes_skew(
- paddle_boxes, -rotation_angle, image_size
- )
-
- # 🎯 步骤 2: 按校正后的 y 坐标分组
- boxes_with_y = []
- for box in paddle_boxes:
- bbox = box['bbox']
- y_center = (bbox[1] + bbox[3]) / 2
- boxes_with_y.append({
- 'y_center': y_center,
- 'box': box
- })
-
- # 按 y 坐标排序
- boxes_with_y.sort(key=lambda x: x['y_center'])
-
- groups = []
- current_group = None
-
- for item in boxes_with_y:
- if current_group is None:
- # 开始新组
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
- else:
- if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
- current_group['boxes'].append(item['box'])
- # 更新组的中心
- current_group['y_center'] = sum(
- (b['bbox'][1] + b['bbox'][3]) / 2 for b in current_group['boxes']
- ) / len(current_group['boxes'])
- else:
- groups.append(current_group)
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
-
- if current_group:
- groups.append(current_group)
-
- print(f" ✓ 分组完成: {len(groups)} 行")
-
- return groups
- def _match_html_rows_to_paddle_groups(self, html_rows: List,
- grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
- """
- 智能匹配 HTML 行与 paddle 分组(增强版 DP:支持跳过 HTML 行,防止链条断裂)
- """
- if not html_rows or not grouped_boxes:
- return {}
-
- mapping = {}
-
- # 🎯 策略 1: 数量相等,简单 1:1 映射
- if len(html_rows) == len(grouped_boxes):
- for i in range(len(html_rows)):
- mapping[i] = [i]
- return mapping
-
- # --- 准备数据 ---
- # 提取 HTML 文本
- html_row_texts = []
- for row in html_rows:
- cells = row.find_all(['td', 'th'])
- texts = [self.text_matcher.normalize_text(c.get_text(strip=True)) for c in cells]
- html_row_texts.append("".join(texts))
- # 预计算所有组的文本
- group_texts = []
- for group in grouped_boxes:
- boxes = group['boxes']
- texts = [self.text_matcher.normalize_text(b['text']) for b in boxes]
- group_texts.append("".join(texts))
- n_html = len(html_row_texts)
- n_paddle = len(grouped_boxes)
- # ⚡️ 优化 3: 预计算合并文本
- MAX_MERGE = 4
- merged_cache = {}
- for j in range(n_paddle):
- current_t = ""
- for k in range(MAX_MERGE):
- if j + k < n_paddle:
- current_t += group_texts[j + k]
- merged_cache[(j, k + 1)] = current_t
- else:
- break
- # --- 动态规划 (DP) ---
- # dp[i][j] 表示:HTML 前 i 行 (0..i) 匹配到了 Paddle 的前 j 组 (0..j) 的最大得分
- # 初始化为负无穷
- dp = np.full((n_html, n_paddle), -np.inf)
- # 记录路径:path[i][j] = (prev_j, start_j)
- # prev_j: 上一行结束的 paddle index
- # start_j: 当前行开始的 paddle index (因为一行可能对应多个组)
- path = {}
- # 参数配置
- SEARCH_WINDOW = 15 # 向前搜索窗口
- SKIP_PADDLE_PENALTY = 0.1 # 跳过 Paddle 组的惩罚
- SKIP_HTML_PENALTY = 0.3 # 关键:跳过 HTML 行的惩罚
- # --- 1. 初始化第一行 ---
- # 选项 A: 匹配 Paddle 组
- for end_j in range(min(n_paddle, SEARCH_WINDOW + MAX_MERGE)):
- for count in range(1, MAX_MERGE + 1):
- start_j = end_j - count + 1
- if start_j < 0: continue
-
- current_text = merged_cache.get((start_j, count), "")
- similarity = self._calculate_similarity(html_row_texts[0], current_text)
-
- penalty = start_j * SKIP_PADDLE_PENALTY
- score = similarity - penalty
-
- # 只有得分尚可才作为有效状态
- if score > 0.1:
- if score > dp[0][end_j]:
- dp[0][end_j] = score
- path[(0, end_j)] = (-1, start_j)
-
- # 选项 B: 第一行就跳过 (虽然少见,但为了完整性)
- # 如果第一行跳过,相当于没有消耗任何 paddle 组,状态难以用 dp[0][j] 表达
- # 这里简化处理,假设第一行必须匹配点什么,或者由后续行修正
- # --- 2. 状态转移 ---
- for i in range(1, n_html):
- html_text = html_row_texts[i]
-
- # 获取上一行所有有效位置
- valid_prev_indices = [j for j in range(n_paddle) if dp[i-1][j] > -np.inf]
-
- # 剪枝
- if len(valid_prev_indices) > 30:
- valid_prev_indices.sort(key=lambda j: dp[i-1][j], reverse=True)
- valid_prev_indices = valid_prev_indices[:30]
- # 🛡️ 关键修复:允许跳过当前 HTML 行 (继承上一行的状态)
- # 如果跳过当前行,Paddle 指针 j 不变
- for prev_j in valid_prev_indices:
- score_skip = dp[i-1][prev_j] - SKIP_HTML_PENALTY
- if score_skip > dp[i][prev_j]:
- dp[i][prev_j] = score_skip
- # 记录路径:start_j = prev_j + 1 表示没有消耗新组 (空范围)
- path[(i, prev_j)] = (prev_j, prev_j + 1)
- # 如果是空行,直接跳过计算,仅保留继承的状态
- if not html_text:
- continue
- # 正常匹配逻辑
- for prev_j in valid_prev_indices:
- prev_score = dp[i-1][prev_j]
-
- max_gap = min(SEARCH_WINDOW, n_paddle - prev_j - 1)
-
- for gap in range(max_gap):
- start_j = prev_j + 1 + gap
-
- for count in range(1, MAX_MERGE + 1):
- end_j = start_j + count - 1
- if end_j >= n_paddle: break
-
- current_text = merged_cache.get((start_j, count), "")
-
- # 长度预筛选
- h_len = len(html_text)
- p_len = len(current_text)
- if h_len > 10 and p_len < h_len * 0.2:
- continue
- similarity = self._calculate_similarity(html_text, current_text)
-
- # 计算惩罚
- # 1. 跳过惩罚 (gap)
- # 2. 长度惩罚 (防止过度合并)
- len_penalty = 0.0
- if h_len > 0:
- ratio = p_len / h_len
- if ratio > 2.0: len_penalty = (ratio - 2.0) * 0.2
- current_score = similarity - (gap * SKIP_PADDLE_PENALTY) - len_penalty
-
- # 只有正收益才转移
- if current_score > 0.1:
- total_score = prev_score + current_score
-
- if total_score > dp[i][end_j]:
- dp[i][end_j] = total_score
- path[(i, end_j)] = (prev_j, start_j)
- # --- 3. 回溯找最优路径 ---
- # 找到最后一行得分最高的结束位置
- best_end_j = -1
- max_score = -np.inf
-
- # 优先找最后一行,如果最后一行没匹配上,往前找
- found_end = False
- for i in range(n_html - 1, -1, -1):
- for j in range(n_paddle):
- if dp[i][j] > max_score:
- max_score = dp[i][j]
- best_end_j = j
- best_last_row = i
- if max_score > -np.inf:
- found_end = True
- break
-
- mapping = {}
- used_groups = set()
-
- if found_end:
- curr_i = best_last_row
- curr_j = best_end_j
-
- while curr_i >= 0:
- if (curr_i, curr_j) in path:
- prev_j, start_j = path[(curr_i, curr_j)]
-
- # 如果 start_j <= curr_j,说明消耗了 Paddle 组
- # 如果 start_j > curr_j,说明是跳过 HTML 行 (空范围)
- if start_j <= curr_j:
- indices = list(range(start_j, curr_j + 1))
- mapping[curr_i] = indices
- used_groups.update(indices)
- else:
- mapping[curr_i] = []
-
- curr_j = prev_j
- curr_i -= 1
- else:
- break
-
- # 填补未匹配的行
- for i in range(n_html):
- if i not in mapping:
- mapping[i] = []
- # --- 4. 后处理:未匹配组的归属 (Orphans) ---
- unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
-
- if unused_groups:
- print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
- for unused_idx in unused_groups:
- unused_group = grouped_boxes[unused_idx]
- unused_y_min = min(b['bbox'][1] for b in unused_group['boxes'])
- unused_y_max = max(b['bbox'][3] for b in unused_group['boxes'])
-
- above_idx = None
- below_idx = None
- above_distance = float('inf')
- below_distance = float('inf')
-
- for i in range(unused_idx - 1, -1, -1):
- if i in used_groups:
- above_idx = i
- above_group = grouped_boxes[i]
- max_y_box = max(above_group['boxes'], key=lambda b: b['bbox'][3])
- above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2
- above_distance = abs(unused_y_min - above_y_center)
- break
-
- for i in range(unused_idx + 1, len(grouped_boxes)):
- if i in used_groups:
- below_idx = i
- below_group = grouped_boxes[i]
- min_y_box = min(below_group['boxes'], key=lambda b: b['bbox'][1])
- below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2
- below_distance = abs(below_y_center - unused_y_max)
- break
-
- closest_used_idx = None
- merge_direction = ""
-
- if above_idx is not None and below_idx is not None:
- if above_distance < below_distance:
- closest_used_idx = above_idx
- merge_direction = "上方"
- else:
- closest_used_idx = below_idx
- merge_direction = "下方"
- elif above_idx is not None:
- closest_used_idx = above_idx
- merge_direction = "上方"
- elif below_idx is not None:
- closest_used_idx = below_idx
- merge_direction = "下方"
-
- if closest_used_idx is not None:
- target_html_row = None
- for html_row_idx, group_indices in mapping.items():
- if closest_used_idx in group_indices:
- target_html_row = html_row_idx
- break
-
- if target_html_row is not None:
- if unused_idx not in mapping[target_html_row]:
- mapping[target_html_row].append(unused_idx)
- mapping[target_html_row].sort()
- print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}({merge_direction}行)")
- used_groups.add(unused_idx)
-
- # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
- for row_idx in mapping:
- if mapping[row_idx]:
- mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
-
- return mapping
- def _calculate_similarity(self, text1: str, text2: str) -> float:
- """
- 计算两个文本的相似度,结合字符覆盖率和序列相似度 (性能优化版)
- """
- if not text1 or not text2:
- return 0.0
-
- len1, len2 = len(text1), len(text2)
-
- # ⚡️ 优化 1: 长度快速检查
- # 如果长度差异过大(例如一个 50 字符,一个 2 字符),直接认为不匹配
- if len1 > 0 and len2 > 0:
- min_l, max_l = min(len1, len2), max(len1, len2)
- if max_l > 10 and min_l / max_l < 0.2:
- return 0.0
- # 1. 字符覆盖率 (Character Overlap)
- from collections import Counter
- c1 = Counter(text1)
- c2 = Counter(text2)
-
- intersection = c1 & c2
- overlap_count = sum(intersection.values())
-
- coverage = overlap_count / len1 if len1 > 0 else 0
-
- # ⚡️ 优化 2: 覆盖率低时跳过昂贵的 fuzz 计算
- # 如果字符重叠率低于 30%,说明内容基本不相关,没必要算序列相似度
- if coverage < 0.3:
- return coverage * 0.7
- # 2. 序列相似度 (Sequence Similarity)
- # 使用 token_sort_ratio 来容忍一定的乱序
- seq_score = fuzz.token_sort_ratio(text1, text2) / 100.0
-
- return (coverage * 0.7) + (seq_score * 0.3)
- def _preprocess_text_for_matching(self, text: str) -> str:
- """
- 预处理文本:在不同类型的字符(如中文和数字/英文)之间插入空格,
- 以便于 token_sort_ratio 更准确地进行分词和匹配。
- """
- if not text:
- return ""
- import re
- # 1. 在中文和非中文(数字/字母)之间插入空格
- # 例如: "2024年" -> "2024 年", "ID号码123" -> "ID号码 123"
- text = re.sub(r'([\u4e00-\u9fa5])([a-zA-Z0-9])', r'\1 \2', text)
- text = re.sub(r'([a-zA-Z0-9])([\u4e00-\u9fa5])', r'\1 \2', text)
- return text
- def _calculate_subsequence_score(self, target: str, source: str) -> float:
- """
- 计算子序列匹配得分 (解决 OCR 噪音插入问题)
- 例如: Target="12345", Source="12(date)34(time)5" -> Score close to 100
- """
- # 1. 仅保留字母和数字,忽略符号干扰
- t_clean = "".join(c for c in target if c.isalnum())
- s_clean = "".join(c for c in source if c.isalnum())
-
- if not t_clean or not s_clean:
- return 0.0
-
- # 2. 贪婪匹配子序列
- t_idx, s_idx = 0, 0
- matches = 0
-
- while t_idx < len(t_clean) and s_idx < len(s_clean):
- if t_clean[t_idx] == s_clean[s_idx]:
- matches += 1
- t_idx += 1
- s_idx += 1
- else:
- # 跳过 source 中的噪音字符
- s_idx += 1
-
- # 3. 计算得分
- match_rate = matches / len(t_clean)
-
- # 如果匹配率太低,直接返回
- if match_rate < 0.8:
- return match_rate * 100
-
- # 4. 噪音惩罚 (防止 Target="1", Source="123456789" 这种误判)
- # 计算噪音长度
- noise_len = len(s_clean) - matches
-
- # 允许一定比例的噪音 (例如日期时间插入,通常占总长度的 30%-50%)
- # 如果噪音长度超过目标长度的 60%,开始扣分
- penalty = 0
- if noise_len > len(t_clean) * 0.6:
- excess_noise = noise_len - (len(t_clean) * 0.6)
- penalty = excess_noise * 0.5 # 每多一个噪音字符扣 0.5 分
- penalty = min(penalty, 20) # 最多扣 20 分
-
- final_score = (match_rate * 100) - penalty
- return max(0, final_score)
- def _match_cell_sequential(self, cell_text: str,
- boxes: List[Dict],
- col_boundaries: List[Tuple[int, int]],
- start_idx: int) -> Optional[Dict]:
- """
- 🎯 顺序匹配单元格:从指定位置开始,逐步合并 boxes 直到匹配
- """
- cell_text_normalized = self.text_matcher.normalize_text(cell_text)
- cell_text_processed = self._preprocess_text_for_matching(cell_text)
-
- if len(cell_text_normalized) < 1:
- return None
- # 🔑 找到第一个未使用的 box
- first_unused_idx = start_idx
- while first_unused_idx < len(boxes) and boxes[first_unused_idx].get('used'):
- first_unused_idx += 1
-
- if first_unused_idx >= len(boxes):
- return None
- # 🔑 策略 1: 单个 box 精确匹配
- for box in boxes[first_unused_idx:]:
- box_text = self.text_matcher.normalize_text(box['text'])
-
- if cell_text_normalized == box_text:
- return self._build_match_result([box], box['text'], 100.0, boxes.index(box))
-
- # 🔑 策略 2: 多个 boxes 合并匹配
- unused_boxes = [b for b in boxes[first_unused_idx:] if not b.get('used')]
- # 合并同列的 boxes 合并
- merged_bboxes = []
- for col_idx in range(len(col_boundaries)):
- combo_boxes = self._get_boxes_in_column(unused_boxes, col_boundaries, col_idx)
- if len(combo_boxes) > 0:
- sorted_combo = sorted(combo_boxes, key=lambda b: (b['bbox'][1], b['bbox'][0]))
- # 🎯 改进:使用空格连接,以便于 token_sort_ratio 进行乱序匹配
- merged_text = ' '.join([b['text'] for b in sorted_combo])
- merged_bboxes.append({
- 'text': merged_text,
- 'sorted_combo': sorted_combo
- })
- for box in merged_bboxes:
- # 1. 精确匹配
- merged_text_normalized = self.text_matcher.normalize_text(box['text'])
- if cell_text_normalized == merged_text_normalized:
- last_sort_idx = boxes.index(box['sorted_combo'][-1])
- return self._build_match_result(box['sorted_combo'], box['text'], 100.0, last_sort_idx)
-
- # 2. 子串匹配
- is_substring = (cell_text_normalized in merged_text_normalized or
- merged_text_normalized in cell_text_normalized)
-
- # 3. 模糊匹配
- # 🎯 改进:使用预处理后的文本进行 token_sort_ratio 计算
- box_text_processed = self._preprocess_text_for_matching(box['text'])
-
- # token_sort_ratio: 自动分词并排序比较,解决 OCR 结果顺序与 HTML 不一致的问题
- token_sort_sim = fuzz.token_sort_ratio(cell_text_processed, box_text_processed)
-
- # partial_ratio: 子串模糊匹配,解决 OCR 识别错误
- partial_sim = fuzz.partial_ratio(cell_text_normalized, merged_text_normalized)
-
- # 🛡️ 增强版防御:防止“短文本”误匹配“长文本”
- if partial_sim > 80:
- len_cell = len(cell_text_normalized)
- len_box = len(merged_text_normalized)
-
- # 确定短方和长方
- if len_cell < len_box:
- len_short, len_long = len_cell, len_box
- text_short = cell_text_normalized
- text_long = merged_text_normalized
- else:
- len_short, len_long = len_box, len_cell
- text_short = merged_text_normalized
- text_long = cell_text_normalized
-
- # 🎯 修正:检测有效内容 (字母、数字、汉字)
- # 使用 Unicode 范围匹配汉字: \u4e00-\u9fa5
- import re
- def has_valid_content(text):
- return bool(re.search(r'[a-zA-Z0-9\u4e00-\u9fa5]', text))
- short_has_content = has_valid_content(text_short)
- long_has_content = has_valid_content(text_long)
-
- # 🛑 拒绝条件 1: 短方是纯符号 (无有效内容),且长方有内容
- # 例如: Cell="-" vs Box="-200" (拦截)
- # 例如: Cell="中国银行" vs Box="中国银行储蓄卡" (不拦截,因为都有汉字)
- if not short_has_content and long_has_content:
- # 允许例外:如果长方也很短 (比如 Cell="-" Box="- "),可能只是多了个空格,不拦截
- if len_long > len_short + 2:
- print(f" ⚠️ 拒绝纯符号部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
- partial_sim = 0.0
- # 🛑 拒绝条件 2: 短方虽然有内容,但太短了 (信息量不足)
- elif short_has_content:
- # 如果短方只有 1 个字符,且长方超过 3 个字符 -> 拒绝
- if len_short == 1 and len_long > 3:
- print(f" ⚠️ 拒绝单字符部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
- partial_sim = 0.0
- # 如果短方只有 2 个字符,且长方超过 8 个字符 -> 拒绝
- elif len_short == 2 and len_long > 8:
- print(f" ⚠️ 拒绝微小碎片部分匹配: '{cell_text}' vs '{merged_text_normalized}'")
- partial_sim = 0.0
- # 🆕 新增条件 3: 覆盖率过低 (防止 "2024" 匹配 "ID2024...")
- # 场景: Cell 是长文本, Box 是短文本, 恰好包含在 Cell 中
- # 逻辑: 如果覆盖率 < 30% 且 整体相似度(token_sort) < 45,说明 Box 缺失了 Cell 的绝大部分内容
- else:
- coverage = len_short / len_long if len_long > 0 else 0
- if coverage < 0.3 and token_sort_sim < 45:
- print(f" ⚠️ 拒绝低覆盖率部分匹配: '{text_short}' in '{text_long}' (cov={coverage:.2f})")
- partial_sim = 0.0
- # 🎯 新增:token_set_ratio (集合匹配)
- # 专门解决:目标文本被 OCR 文本中的噪音隔开的情况
- # 例如 Target="A B", OCR="A noise B" -> token_set_ratio 会很高
- token_set_sim = fuzz.token_set_ratio(cell_text_processed, box_text_processed)
- # 🎯 策略 4: 重构匹配 (Reconstruction Match) - 解决 ID 被噪音打断的问题
- # 逻辑:提取 OCR 中所有属于 Target 子串的 token,拼起来再比
- reconstruct_sim = 0.0
- if len(cell_text_normalized) > 10: # 仅对长文本启用,防止短文本误判
- # 使用预处理后的文本分词 (已处理中文/数字间隔)
- box_tokens = box_text_processed.split()
- # 筛选出所有是目标文本子串的 token
- valid_tokens = []
- for token in box_tokens:
- # 忽略太短的 token (除非目标也很短),防止 "1" 这种误匹配
- if len(token) < 2 and len(cell_text_normalized) > 5:
- continue
- if token in cell_text_normalized:
- valid_tokens.append(token)
-
- if valid_tokens:
- # 拼接回原始形态
- reconstructed_text = "".join(valid_tokens)
- reconstruct_sim = fuzz.ratio(cell_text_normalized, reconstructed_text)
- if reconstruct_sim > 90:
- print(f" 🧩 重构匹配生效: '{reconstructed_text}' (sim={reconstruct_sim})")
- # 🎯 策略 5: 子序列匹配 (Subsequence Match) - 解决粘连噪音问题
- # 专门针对: '1544...1050' + '2024-08-10' + '0433...' 这种场景
- subseq_sim = 0.0
- if len(cell_text_normalized) > 8: # 仅对较长文本启用
- subseq_sim = self._calculate_subsequence_score(cell_text_normalized, merged_text_normalized)
- # 🛡️ 关键修复:长度和类型防御
- if subseq_sim > 80:
- len_cell = len(cell_text_normalized)
- len_box = len(merged_text_normalized)
-
- # 1. 长度差异过大 (Box 比 Cell 长很多)
- if len_box > len_cell * 1.5:
- # 2. 且 Cell 是数字/日期/时间类型
- import re
- if re.match(r'^[\d\-\:\.\s]+$', cell_text_normalized):
- # 🧠 智能豁免:如果 Cell 本身很长 (例如 > 12字符),说明是长ID
- # 长ID即使夹杂了噪音 (如 "ID...日期...文字"),只要子序列匹配高,通常也是对的
- # 只有短文本 (如 "2024") 才需要严格防御
- if len_cell < 12:
- print(f" ⚠️ 拒绝子序列匹配: 长度差异大且为短数字类型 (sim={subseq_sim})")
- subseq_sim = 0.0
- else:
- print(f" ✅ 接受长ID子序列匹配: 尽管长度差异大,但特征显著 (len={len_cell})")
- if subseq_sim > 90:
- print(f" 🔗 子序列匹配生效: '{cell_text[:10]}...' (sim={subseq_sim:.1f})")
- # 综合得分:取五者最大值
- similarity = max(token_sort_sim, partial_sim, token_set_sim, reconstruct_sim, subseq_sim)
- # 🎯 子串匹配加分
- if is_substring:
- similarity = min(100, similarity + 10)
-
- # 🎯 长度惩罚:如果 box 内容比 cell 多太多(例如吞了下一个单元格),扣分
- # 注意:token_set_ratio 对长度不敏感,所以这里必须严格检查长度,防止误判
- # 只有当 similarity 很高时才检查,防止误杀
- if similarity > 80:
- len_cell = len(cell_text_normalized)
- len_box = len(merged_text_normalized)
-
- # 如果是 token_set_sim 贡献的高分,说明 OCR 里包含了很多噪音
- # 我们需要确保这些噪音不是“下一个单元格的内容”
- # 这里可以加一个更严格的长度检查,或者检查是否包含换行符等
- if len_box > len_cell * 2.0 + 10: # 放宽一点,因为 token_set 本来就是处理噪音的
- similarity -= 10 # 稍微扣一点分,表示虽然全找到了,但噪音太多不太完美
-
- if similarity >= self.text_matcher.similarity_threshold:
- print(f" ✓ 匹配成功: '{cell_text[:15]}' vs '{box['text'][:15]}' (相似度: {similarity})")
- # 由于是模糊匹配,返回第一个未使用的 box 作为 last_index
- for b in boxes:
- if not b.get('used'):
- last_idx = max(boxes.index(b)-1, 0)
- break
- return self._build_match_result(box['sorted_combo'], box['text'], similarity, max(start_idx, last_idx))
-
- print(f" ✗ 匹配失败: '{cell_text[:15]}'")
- return None
- def _build_match_result(self, boxes: List[Dict], text: str,
- score: float, last_index: int) -> Dict:
- """构建匹配结果(使用原始坐标)"""
-
- # 🔑 关键修复:使用 original_bbox(如果存在)
- def get_original_bbox(box: Dict) -> List[int]:
- return box.get('original_bbox', box['bbox'])
-
- original_bboxes = [get_original_bbox(b) for b in boxes]
-
- merged_bbox = [
- min(b[0] for b in original_bboxes),
- min(b[1] for b in original_bboxes),
- max(b[2] for b in original_bboxes),
- max(b[3] for b in original_bboxes)
- ]
-
- return {
- 'bbox': merged_bbox, # ✅ 使用原始坐标
- 'text': text,
- 'score': score,
- 'paddle_indices': [b['paddle_bbox_index'] for b in boxes],
- 'used_boxes': boxes,
- 'last_used_index': last_index
- }
|