| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103 |
- #!/usr/bin/env python3
- """
- 基于Streamlit的OCR可视化校验工具(重构版)
- 提供丰富的交互组件和更好的用户体验
- """
- import streamlit as st
- from pathlib import Path
- from PIL import Image
- from typing import Dict, List, Optional
- import plotly.graph_objects as go
- from io import BytesIO
- import pandas as pd
- import numpy as np
- import plotly.express as px
- import json
- # 导入工具模块
- from ocr_validator_utils import (
- load_config, load_css_styles, load_ocr_data_file, process_ocr_data,
- draw_bbox_on_image, get_ocr_statistics, convert_html_table_to_markdown,
- parse_html_tables, find_available_ocr_files, create_dynamic_css,
- export_tables_to_excel, get_table_statistics, group_texts_by_category,
- find_available_ocr_files_multi_source, get_data_source_display_name
- )
- from ocr_validator_layout import OCRLayoutManager
- from ocr_by_vlm import ocr_with_vlm
- from compare_ocr_results import compare_ocr_results
- class StreamlitOCRValidator:
- def __init__(self):
- self.config = load_config()
- self.ocr_data = []
- self.md_content = ""
- self.image_path = ""
- self.text_bbox_mapping = {}
- self.selected_text = None
- self.marked_errors = set()
-
- # 多数据源相关
- self.all_sources = {}
- self.current_source_key = None
- self.current_source_config = None
- self.file_info = []
- self.selected_file_index = -1
- self.display_options = []
- self.file_paths = []
- # 初始化布局管理器
- self.layout_manager = OCRLayoutManager(self)
- # 加载多数据源文件信息
- self.load_multi_source_info()
-
- def load_multi_source_info(self):
- """加载多数据源文件信息"""
- self.all_sources = find_available_ocr_files_multi_source(self.config)
-
- # 如果有数据源,默认选择第一个
- if self.all_sources:
- first_source_key = list(self.all_sources.keys())[0]
- self.switch_to_source(first_source_key)
-
- def switch_to_source(self, source_key: str):
- """切换到指定数据源"""
- if source_key in self.all_sources:
- self.current_source_key = source_key
- source_data = self.all_sources[source_key]
- self.current_source_config = source_data['config']
- self.file_info = source_data['files']
-
- if self.file_info:
- # 创建显示选项列表
- self.display_options = [f"{info['display_name']}" for info in self.file_info]
- self.file_paths = [info['path'] for info in self.file_info]
-
- # 重置文件选择
- self.selected_file_index = -1
-
- print(f"✅ 切换到数据源: {source_key}")
- else:
- print(f"⚠️ 数据源 {source_key} 没有可用文件")
-
- def setup_page_config(self):
- """设置页面配置"""
- ui_config = self.config['ui']
- st.set_page_config(
- page_title=ui_config['page_title'],
- page_icon=ui_config['page_icon'],
- layout=ui_config['layout'],
- initial_sidebar_state=ui_config['sidebar_state']
- )
-
- # 加载CSS样式
- css_content = load_css_styles()
- st.markdown(f"<style>{css_content}</style>", unsafe_allow_html=True)
- def create_data_source_selector(self):
- """创建数据源选择器"""
- if not self.all_sources:
- st.warning("❌ 未找到任何数据源,请检查配置文件")
- return
-
- # 数据源选择
- source_options = {}
- for source_key, source_data in self.all_sources.items():
- display_name = get_data_source_display_name(source_data['config'])
- source_options[display_name] = source_key
-
- # 获取当前选择的显示名称
- current_display_name = None
- if self.current_source_key:
- for display_name, key in source_options.items():
- if key == self.current_source_key:
- current_display_name = display_name
- break
-
- selected_display_name = st.selectbox(
- "📁 选择数据源",
- options=list(source_options.keys()),
- index=list(source_options.keys()).index(current_display_name) if current_display_name else 0,
- key="data_source_selector",
- help="选择要分析的OCR数据源"
- )
-
- selected_source_key = source_options[selected_display_name]
-
- # 如果数据源发生变化,切换数据源
- if selected_source_key != self.current_source_key:
- self.switch_to_source(selected_source_key)
- # 重置session state
- if 'selected_file_index' in st.session_state:
- st.session_state.selected_file_index = 0
- st.rerun()
-
- # 显示数据源信息
- if self.current_source_config:
- with st.expander("📋 数据源详情", expanded=False):
- col1, col2, col3 = st.columns(3)
- with col1:
- st.write(f"**名称:** {self.current_source_config['name']}")
- st.write(f"**OCR工具:** {self.current_source_config['ocr_tool']}")
- with col2:
- st.write(f"**输出目录:** {self.current_source_config['ocr_out_dir']}")
- st.write(f"**图片目录:** {self.current_source_config.get('src_img_dir', 'N/A')}")
- with col3:
- st.write(f"**描述:** {self.current_source_config.get('description', 'N/A')}")
- st.write(f"**文件数量:** {len(self.file_info)}")
-
- def load_ocr_data(self, json_path: str, md_path: Optional[str] = None, image_path: Optional[str] = None):
- """加载OCR相关数据 - 支持多数据源配置"""
- try:
- # 使用当前数据源的配置加载数据
- if self.current_source_config:
- # 临时修改config以使用当前数据源的配置
- temp_config = self.config.copy()
- temp_config['paths'] = {
- 'ocr_out_dir': self.current_source_config['ocr_out_dir'],
- 'src_img_dir': self.current_source_config.get('src_img_dir', ''),
- 'pre_validation_dir': self.config['pre_validation']['out_dir']
- }
-
- # 设置OCR工具类型
- temp_config['current_ocr_tool'] = self.current_source_config['ocr_tool']
-
- self.ocr_data, self.md_content, self.image_path = load_ocr_data_file(json_path, temp_config)
- else:
- self.ocr_data, self.md_content, self.image_path = load_ocr_data_file(json_path, self.config)
-
- self.process_data()
- except Exception as e:
- st.error(f"❌ 加载失败: {e}")
- st.exception(e)
-
- def process_data(self):
- """处理OCR数据"""
- self.text_bbox_mapping = process_ocr_data(self.ocr_data, self.config)
-
- def get_statistics(self) -> Dict:
- """获取统计信息"""
- return get_ocr_statistics(self.ocr_data, self.text_bbox_mapping, self.marked_errors)
-
- def display_html_table_as_dataframe(self, html_content: str, enable_editing: bool = False):
- """将HTML表格解析为DataFrame显示 - 增强版本支持横向滚动"""
- tables = parse_html_tables(html_content)
-
- if not tables:
- st.warning("未找到可解析的表格")
- # 对于无法解析的HTML表格,使用自定义CSS显示
- st.markdown("""
- <style>
- .scrollable-table {
- overflow-x: auto;
- white-space: nowrap;
- border: 1px solid #ddd;
- border-radius: 5px;
- margin: 10px 0;
- }
- .scrollable-table table {
- width: 100%;
- border-collapse: collapse;
- }
- .scrollable-table th, .scrollable-table td {
- border: 1px solid #ddd;
- padding: 8px;
- text-align: left;
- min-width: 100px;
- }
- .scrollable-table th {
- background-color: #f5f5f5;
- font-weight: bold;
- }
- </style>
- """, unsafe_allow_html=True)
-
- st.markdown(f'<div class="scrollable-table">{html_content}</div>', unsafe_allow_html=True)
- return
-
- for i, table in enumerate(tables):
- st.subheader(f"📊 表格 {i+1}")
-
- # 表格信息显示
- col_info1, col_info2, col_info3, col_info4 = st.columns(4)
- with col_info1:
- st.metric("行数", len(table))
- with col_info2:
- st.metric("列数", len(table.columns))
- with col_info3:
- # 检查是否有超宽表格
- is_wide_table = len(table.columns) > 8
- st.metric("表格类型", "超宽表格" if is_wide_table else "普通表格")
- with col_info4:
- # 表格操作模式选择
- display_mode = st.selectbox(
- f"显示模式 (表格{i+1})",
- ["完整显示", "分页显示", "筛选列显示"],
- key=f"display_mode_{i}"
- )
-
- # 创建表格操作按钮
- col1, col2, col3, col4 = st.columns(4)
- with col1:
- show_info = st.checkbox(f"显示详细信息", key=f"info_{i}")
- with col2:
- show_stats = st.checkbox(f"显示统计信息", key=f"stats_{i}")
- with col3:
- enable_filter = st.checkbox(f"启用过滤", key=f"filter_{i}")
- with col4:
- enable_sort = st.checkbox(f"启用排序", key=f"sort_{i}")
-
- # 根据显示模式处理表格
- display_table = self._process_table_display_mode(table, i, display_mode)
-
- # 数据过滤和排序逻辑
- filtered_table = self._apply_table_filters_and_sorts(display_table, i, enable_filter, enable_sort)
-
- # 显示表格 - 使用自定义CSS支持横向滚动
- st.markdown("""
- <style>
- .dataframe-container {
- overflow-x: auto;
- border: 1px solid #ddd;
- border-radius: 5px;
- margin: 10px 0;
- }
-
- /* 为超宽表格特殊样式 */
- .wide-table-container {
- overflow-x: auto;
- max-height: 500px;
- overflow-y: auto;
- border: 2px solid #0288d1;
- border-radius: 8px;
- background: linear-gradient(90deg, #f8f9fa 0%, #ffffff 100%);
- }
-
- .dataframe thead th {
- position: sticky;
- top: 0;
- background-color: #f5f5f5 !important;
- z-index: 10;
- border-bottom: 2px solid #0288d1;
- }
-
- .dataframe tbody td {
- white-space: nowrap;
- min-width: 100px;
- max-width: 300px;
- overflow: hidden;
- text-overflow: ellipsis;
- }
- </style>
- """, unsafe_allow_html=True)
-
- # 根据表格宽度选择显示容器
- container_class = "wide-table-container" if len(table.columns) > 8 else "dataframe-container"
-
- if enable_editing:
- st.markdown(f'<div class="{container_class}">', unsafe_allow_html=True)
- edited_table = st.data_editor(
- filtered_table,
- use_container_width=True,
- key=f"editor_{i}",
- height=400 if len(table.columns) > 8 else None
- )
- st.markdown('</div>', unsafe_allow_html=True)
-
- if not edited_table.equals(filtered_table):
- st.success("✏️ 表格已编辑,可以导出修改后的数据")
- else:
- st.markdown(f'<div class="{container_class}">', unsafe_allow_html=True)
- st.dataframe(
- filtered_table,
- # use_container_width=True,
- width =400 if len(table.columns) > 8 else "stretch"
- )
- st.markdown('</div>', unsafe_allow_html=True)
-
- # 显示表格信息和统计
- self._display_table_info_and_stats(table, filtered_table, show_info, show_stats, i)
-
- st.markdown("---")
-
- def _apply_table_filters_and_sorts(self, table: pd.DataFrame, table_index: int, enable_filter: bool, enable_sort: bool) -> pd.DataFrame:
- """应用表格过滤和排序"""
- filtered_table = table.copy()
-
- # 数据过滤
- if enable_filter and not table.empty:
- filter_col = st.selectbox(
- f"选择过滤列 (表格 {table_index+1})",
- options=['无'] + list(table.columns),
- key=f"filter_col_{table_index}"
- )
-
- if filter_col != '无':
- filter_value = st.text_input(f"过滤值 (表格 {table_index+1})", key=f"filter_value_{table_index}")
- if filter_value:
- filtered_table = table[table[filter_col].astype(str).str.contains(filter_value, na=False)]
-
- # 数据排序
- if enable_sort and not filtered_table.empty:
- sort_col = st.selectbox(
- f"选择排序列 (表格 {table_index+1})",
- options=['无'] + list(filtered_table.columns),
- key=f"sort_col_{table_index}"
- )
-
- if sort_col != '无':
- sort_order = st.radio(
- f"排序方式 (表格 {table_index+1})",
- options=['升序', '降序'],
- horizontal=True,
- key=f"sort_order_{table_index}"
- )
- ascending = (sort_order == '升序')
- filtered_table = filtered_table.sort_values(sort_col, ascending=ascending)
-
- return filtered_table
-
- def _display_table_info_and_stats(self, original_table: pd.DataFrame, filtered_table: pd.DataFrame,
- show_info: bool, show_stats: bool, table_index: int):
- """显示表格信息和统计数据"""
- if show_info:
- st.write("**表格信息:**")
- st.write(f"- 原始行数: {len(original_table)}")
- st.write(f"- 过滤后行数: {len(filtered_table)}")
- st.write(f"- 列数: {len(original_table.columns)}")
- st.write(f"- 列名: {', '.join(original_table.columns)}")
-
- if show_stats:
- st.write("**统计信息:**")
- numeric_cols = filtered_table.select_dtypes(include=[np.number]).columns
- if len(numeric_cols) > 0:
- st.dataframe(filtered_table[numeric_cols].describe())
- else:
- st.info("表格中没有数值列")
-
- # 导出功能
- if st.button(f"📥 导出表格 {table_index+1}", key=f"export_{table_index}"):
- self._create_export_buttons(filtered_table, table_index)
-
- def _create_export_buttons(self, table: pd.DataFrame, table_index: int):
- """创建导出按钮"""
- # CSV导出
- csv_data = table.to_csv(index=False)
- st.download_button(
- label=f"下载CSV (表格 {table_index+1})",
- data=csv_data,
- file_name=f"table_{table_index+1}.csv",
- mime="text/csv",
- key=f"download_csv_{table_index}"
- )
-
- # Excel导出
- excel_buffer = BytesIO()
- table.to_excel(excel_buffer, index=False)
- st.download_button(
- label=f"下载Excel (表格 {table_index+1})",
- data=excel_buffer.getvalue(),
- file_name=f"table_{table_index+1}.xlsx",
- mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
- key=f"download_excel_{table_index}"
- )
-
- def _process_table_display_mode(self, table: pd.DataFrame, table_index: int, display_mode: str) -> pd.DataFrame:
- """根据显示模式处理表格"""
- if display_mode == "分页显示":
- # 分页显示
- page_size = st.selectbox(
- f"每页显示行数 (表格 {table_index+1})",
- [10, 20, 50, 100],
- key=f"page_size_{table_index}"
- )
-
- total_pages = (len(table) - 1) // page_size + 1
-
- if total_pages > 1:
- page_number = st.selectbox(
- f"页码 (表格 {table_index+1})",
- range(1, total_pages + 1),
- key=f"page_number_{table_index}"
- )
-
- start_idx = (page_number - 1) * page_size
- end_idx = start_idx + page_size
- return table.iloc[start_idx:end_idx]
-
- return table
-
- elif display_mode == "筛选列显示":
- # 列筛选显示
- if len(table.columns) > 5:
- selected_columns = st.multiselect(
- f"选择要显示的列 (表格 {table_index+1})",
- table.columns.tolist(),
- default=table.columns.tolist()[:5], # 默认显示前5列
- key=f"selected_columns_{table_index}"
- )
-
- if selected_columns:
- return table[selected_columns]
-
- return table
-
- else: # 完整显示
- return table
-
- @st.dialog("VLM预校验", width="large", dismissible=True, on_dismiss="rerun")
- def vlm_pre_validation(self):
- """VLM预校验功能 - 封装OCR识别和结果对比"""
-
- if not self.image_path or not self.md_content:
- st.error("❌ 请先加载OCR数据文件")
- return
- # 初始化对比结果存储
- if 'comparison_result' not in st.session_state:
- st.session_state.comparison_result = None
- # 创建进度条和状态显示
- with st.spinner("正在进行VLM预校验...", show_time=True):
- status_text = st.empty()
-
- try:
- current_md_path = Path(self.file_paths[self.selected_file_index]).with_suffix('.md')
- if not current_md_path.exists():
- st.error("❌ 当前OCR结果的Markdown文件不存在,无法进行对比")
- return
- # 第一步:准备目录
- pre_validation_dir = Path(self.config['pre_validation'].get('out_dir', './output/pre_validation/')).resolve()
- pre_validation_dir.mkdir(parents=True, exist_ok=True)
- status_text.write(f"工作目录: {pre_validation_dir}")
- # 第二步:调用VLM进行OCR识别
- status_text.text("🤖 正在调用VLM进行OCR识别...")
-
- # 在expander中显示OCR过程
- with st.expander("🔍 VLM OCR识别过程", expanded=True):
- ocr_output = st.empty()
-
- # 捕获OCR输出
- import io
- import contextlib
-
- # 创建字符串缓冲区来捕获print输出
- output_buffer = io.StringIO()
-
- with contextlib.redirect_stdout(output_buffer):
- ocr_result = ocr_with_vlm(
- image_path=str(self.image_path),
- output_dir=str(pre_validation_dir),
- normalize_numbers=True
- )
-
- # 显示OCR过程输出
- ocr_output.code(output_buffer.getvalue(), language='text')
-
- status_text.text("✅ VLM OCR识别完成")
-
- # 第三步:获取VLM生成的文件路径
- vlm_md_path = pre_validation_dir / f"{Path(self.image_path).stem}.md"
-
- if not vlm_md_path.exists():
- st.error("❌ VLM OCR结果文件未生成")
- return
-
- # 第四步:调用对比功能
- status_text.text("📊 正在对比OCR结果...")
-
- # 在expander中显示对比过程
- comparison_result_path = pre_validation_dir / f"{current_md_path.stem}_comparison_result"
- with st.expander("🔍 OCR结果对比过程", expanded=True):
- compare_output = st.empty()
-
- # 捕获对比输出
- output_buffer = io.StringIO()
-
- with contextlib.redirect_stdout(output_buffer):
- comparison_result = compare_ocr_results(
- file1_path=str(current_md_path),
- file2_path=str(vlm_md_path),
- output_file=str(comparison_result_path),
- output_format='both',
- ignore_images=True
- )
-
- # 显示对比过程输出
- compare_output.code(output_buffer.getvalue(), language='text')
-
- status_text.text("✅ VLM预校验完成")
- st.session_state.comparison_result = {
- "image_path": self.image_path,
- "comparison_result_json": f"{comparison_result_path}.json",
- "comparison_result_md": f"{comparison_result_path}.md",
- "comparison_result": comparison_result
- }
-
- # 第五步:显示对比结果
- self.display_comparison_results(comparison_result, detailed=False)
-
- # 第六步:提供文件下载
- # self.provide_download_options(pre_validation_dir, vlm_md_path, comparison_result)
-
- except Exception as e:
- st.error(f"❌ VLM预校验失败: {e}")
- st.exception(e)
-
- def display_comparison_results(self, comparison_result: dict, detailed: bool = True):
- """显示对比结果摘要 - 使用DataFrame展示"""
-
- st.header("📊 VLM预校验结果")
-
- # 统计信息
- stats = comparison_result['statistics']
-
- # 统计信息概览
- col1, col2, col3, col4 = st.columns(4)
- with col1:
- st.metric("总差异数", stats['total_differences'])
- with col2:
- st.metric("表格差异", stats['table_differences'])
- with col3:
- st.metric("金额差异", stats['amount_differences'])
- with col4:
- st.metric("段落差异", stats['paragraph_differences'])
-
- # 结果判断
- if stats['total_differences'] == 0:
- st.success("🎉 完美匹配!VLM识别结果与原OCR结果完全一致")
- else:
- st.warning(f"⚠️ 发现 {stats['total_differences']} 个差异,建议人工检查")
-
- # 使用DataFrame显示差异详情
- if comparison_result['differences']:
- st.subheader("🔍 差异详情对比")
-
- # 准备DataFrame数据
- diff_data = []
- for i, diff in enumerate(comparison_result['differences'], 1):
- diff_data.append({
- '序号': i,
- '位置': diff['position'],
- '类型': diff['type'],
- '原OCR结果': diff['file1_value'][:100] + ('...' if len(diff['file1_value']) > 100 else ''),
- 'VLM识别结果': diff['file2_value'][:100] + ('...' if len(diff['file2_value']) > 100 else ''),
- '描述': diff['description'][:80] + ('...' if len(diff['description']) > 80 else ''),
- '严重程度': self._get_severity_level(diff)
- })
-
- # 创建DataFrame
- df_differences = pd.DataFrame(diff_data)
-
- # 添加样式
- def highlight_severity(val):
- """根据严重程度添加颜色"""
- if val == '高':
- return 'background-color: #ffebee; color: #c62828'
- elif val == '中':
- return 'background-color: #fff3e0; color: #ef6c00'
- elif val == '低':
- return 'background-color: #e8f5e8; color: #2e7d32'
- return ''
-
- # 显示DataFrame
- styled_df = df_differences.style.applymap(
- highlight_severity,
- subset=['严重程度']
- ).format({
- '序号': '{:d}',
- })
-
- st.dataframe(
- styled_df,
- use_container_width=True,
- height=400,
- hide_index=True,
- column_config={
- "序号": st.column_config.NumberColumn(
- "序号",
- width=None, # 自动调整宽度
- pinned=True,
- help="差异项序号"
- ),
- "位置": st.column_config.TextColumn(
- "位置",
- width=None, # 自动调整宽度
- pinned=True,
- help="差异在文档中的位置"
- ),
- "类型": st.column_config.TextColumn(
- "类型",
- width=None, # 自动调整宽度
- pinned=True,
- help="差异类型"
- ),
- "原OCR结果": st.column_config.TextColumn(
- "原OCR结果",
- width="large", # 自动调整宽度
- pinned=True,
- help="原始OCR识别结果"
- ),
- "VLM识别结果": st.column_config.TextColumn(
- "VLM识别结果",
- width="large", # 自动调整宽度
- help="VLM重新识别的结果"
- ),
- "描述": st.column_config.TextColumn(
- "描述",
- width="medium", # 自动调整宽度
- help="差异详细描述"
- ),
- "严重程度": st.column_config.TextColumn(
- "严重程度",
- width=None, # 自动调整宽度
- help="差异严重程度评级"
- )
- }
- )
-
- # 详细差异查看
- st.subheader("🔍 详细差异查看")
-
- if detailed:
- # 选择要查看的差异
- selected_diff_index = st.selectbox(
- "选择要查看的差异:",
- options=range(len(comparison_result['differences'])),
- format_func=lambda x: f"差异 {x+1}: {comparison_result['differences'][x]['position']} - {comparison_result['differences'][x]['type']}",
- key="selected_diff"
- )
-
- if selected_diff_index is not None:
- diff = comparison_result['differences'][selected_diff_index]
-
- # 并排显示完整内容
- col1, col2 = st.columns(2)
-
- with col1:
- st.write("**原OCR结果:**")
- st.text_area(
- "原OCR结果详情",
- value=diff['file1_value'],
- height=200,
- key=f"original_{selected_diff_index}",
- label_visibility="collapsed"
- )
-
- with col2:
- st.write("**VLM识别结果:**")
- st.text_area(
- "VLM识别结果详情",
- value=diff['file2_value'],
- height=200,
- key=f"vlm_{selected_diff_index}",
- label_visibility="collapsed"
- )
-
- # 差异详细信息
- st.info(f"**位置:** {diff['position']}")
- st.info(f"**类型:** {diff['type']}")
- st.info(f"**描述:** {diff['description']}")
- st.info(f"**严重程度:** {self._get_severity_level(diff)}")
-
- # 差异统计图表
- st.subheader("📈 差异类型分布")
-
- # 按类型统计差异
- type_counts = {}
- severity_counts = {'高': 0, '中': 0, '低': 0}
-
- for diff in comparison_result['differences']:
- diff_type = diff['type']
- type_counts[diff_type] = type_counts.get(diff_type, 0) + 1
-
- severity = self._get_severity_level(diff)
- severity_counts[severity] += 1
-
- col1, col2 = st.columns(2)
-
- with col1:
- # 类型分布饼图
- if type_counts:
- fig_type = px.pie(
- values=list(type_counts.values()),
- names=list(type_counts.keys()),
- title="差异类型分布"
- )
- st.plotly_chart(fig_type, use_container_width=True)
-
- with col2:
- # 严重程度分布条形图
- fig_severity = px.bar(
- x=list(severity_counts.keys()),
- y=list(severity_counts.values()),
- title="差异严重程度分布",
- color=list(severity_counts.keys()),
- color_discrete_map={'高': '#f44336', '中': '#ff9800', '低': '#4caf50'}
- )
- st.plotly_chart(fig_severity, use_container_width=True)
-
- # 下载选项
- if detailed:
- self._provide_download_options_in_results(comparison_result)
- def _get_severity_level(self, diff: dict) -> str:
- """根据差异类型和内容判断严重程度"""
- # 如果差异中已经包含严重程度,直接使用
- if 'severity' in diff:
- severity_map = {'high': '高', 'medium': '中', 'low': '低'}
- return severity_map.get(diff['severity'], '中')
-
- # 原有的逻辑作为后备
- diff_type = diff['type'].lower()
-
- # 金额相关差异为高严重程度
- if 'amount' in diff_type or 'number' in diff_type:
- return '高'
-
- # 表格结构差异为中等严重程度
- if 'table' in diff_type or 'structure' in diff_type:
- return '中'
-
- # 检查相似度
- if 'similarity' in diff:
- similarity = diff['similarity']
- if similarity < 50:
- return '高'
- elif similarity < 85:
- return '中'
- else:
- return '低'
-
- # 检查内容长度差异
- len_diff = abs(len(diff['file1_value']) - len(diff['file2_value']))
- if len_diff > 50:
- return '高'
- elif len_diff > 10:
- return '中'
- else:
- return '低'
- def _provide_download_options_in_results(self, comparison_result: dict):
- """在结果页面提供下载选项"""
-
- st.subheader("📥 导出预校验结果")
-
- col1, col2, col3 = st.columns(3)
-
- with col1:
- # 导出差异详情为Excel
- if comparison_result['differences']:
- diff_data = []
- for i, diff in enumerate(comparison_result['differences'], 1):
- diff_data.append({
- '序号': i,
- '位置': diff['position'],
- '类型': diff['type'],
- '原OCR结果': diff['file1_value'],
- 'VLM识别结果': diff['file2_value'],
- '描述': diff['description'],
- '严重程度': self._get_severity_level(diff)
- })
-
- df_export = pd.DataFrame(diff_data)
- excel_buffer = BytesIO()
- df_export.to_excel(excel_buffer, index=False, sheet_name='差异详情')
-
- st.download_button(
- label="📊 下载差异详情(Excel)",
- data=excel_buffer.getvalue(),
- file_name=f"vlm_comparison_differences_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.xlsx",
- mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
- key="download_differences_excel"
- )
-
- with col2:
- # 导出统计报告
- stats_data = {
- '统计项目': ['总差异数', '表格差异', '金额差异', '段落差异'],
- '数量': [
- comparison_result['statistics']['total_differences'],
- comparison_result['statistics']['table_differences'],
- comparison_result['statistics']['amount_differences'],
- comparison_result['statistics']['paragraph_differences']
- ]
- }
-
- df_stats = pd.DataFrame(stats_data)
- csv_stats = df_stats.to_csv(index=False)
-
- st.download_button(
- label="📈 下载统计报告(CSV)",
- data=csv_stats,
- file_name=f"vlm_comparison_stats_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.csv",
- mime="text/csv",
- key="download_stats_csv"
- )
-
- with col3:
- # 导出完整报告为JSON
- import json
-
- report_json = json.dumps(comparison_result, ensure_ascii=False, indent=2)
-
- st.download_button(
- label="📄 下载完整报告(JSON)",
- data=report_json,
- file_name=f"vlm_comparison_full_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.json",
- mime="application/json",
- key="download_full_json"
- )
-
- # 操作建议
- st.subheader("🚀 后续操作建议")
-
- total_diffs = comparison_result['statistics']['total_differences']
- if total_diffs == 0:
- st.success("✅ VLM识别结果与原OCR完全一致,可信度很高,无需人工校验")
- elif total_diffs <= 5:
- st.warning("⚠️ 发现少量差异,建议重点检查高严重程度的差异项")
- elif total_diffs <= 20:
- st.warning("🔍 发现中等数量差异,建议详细检查差异表格中标红的项目")
- else:
- st.error("❌ 发现大量差异,建议重新进行OCR识别或检查原始图片质量")
-
- @st.dialog("查看预校验结果", width="large", dismissible=True, on_dismiss="rerun")
- def show_comparison_results_dialog(self):
- """显示VLM预校验结果的对话框"""
- current_md_path = Path(self.file_paths[self.selected_file_index]).with_suffix('.md')
- pre_validation_dir = Path(self.config['pre_validation'].get('out_dir', './output/pre_validation/')).resolve()
- comparison_result_path = pre_validation_dir / f"{current_md_path.stem}_comparison_result.json"
- if 'comparison_result' in st.session_state and st.session_state.comparison_result:
- self.display_comparison_results(st.session_state.comparison_result['comparison_result'])
- elif comparison_result_path.exists():
- # 如果pre_validation_dir下有结果文件,提示用户加载
- if st.button("加载预校验结果"):
- with open(comparison_result_path, "r", encoding="utf-8") as f:
- comparison_json_result = json.load(f)
- comparison_result = {
- "image_path": self.image_path,
- "comparison_result_json": str(comparison_result_path),
- "comparison_result_md": str(comparison_result_path.with_suffix('.md')),
- "comparison_result": comparison_json_result
- }
-
- st.session_state.comparison_result = comparison_result
- self.display_comparison_results(comparison_json_result)
- else:
- st.info("暂无预校验结果,请先运行VLM预校验")
- def create_compact_layout(self, config):
- """创建滚动凑布局"""
- return self.layout_manager.create_compact_layout(config)
- @st.dialog("message", width="small", dismissible=True, on_dismiss="rerun")
- def message_box(msg: str, msg_type: str = "info"):
- if msg_type == "info":
- st.info(msg)
- elif msg_type == "warning":
- st.warning(msg)
- elif msg_type == "error":
- st.error(msg)
- def main():
- """主应用"""
- # 初始化应用
- if 'validator' not in st.session_state:
- validator = StreamlitOCRValidator()
- st.session_state.validator = validator
- st.session_state.validator.setup_page_config()
-
- # 页面标题
- config = st.session_state.validator.config
- st.title(config['ui']['page_title'])
- else:
- validator = st.session_state.validator
- config = st.session_state.validator.config
-
- if 'selected_text' not in st.session_state:
- st.session_state.selected_text = None
-
- if 'marked_errors' not in st.session_state:
- st.session_state.marked_errors = set()
-
- # 数据源选择器
- validator.create_data_source_selector()
-
- # 如果没有可用的数据源,提前返回
- if not validator.all_sources:
- st.stop()
-
- # 文件选择区域
- with st.container(height=75, horizontal=True, horizontal_alignment='left', gap="medium"):
- # 初始化session_state中的选择索引
- if 'selected_file_index' not in st.session_state:
- st.session_state.selected_file_index = 0
-
- if validator.display_options:
- # 文件选择下拉框
- selected_index = st.selectbox(
- "选择OCR结果文件",
- range(len(validator.display_options)),
- format_func=lambda i: validator.display_options[i],
- index=st.session_state.selected_file_index,
- key="selected_selectbox",
- label_visibility="collapsed"
- )
-
- # 更新session_state
- if selected_index != st.session_state.selected_file_index:
- st.session_state.selected_file_index = selected_index
- selected_file = validator.file_paths[selected_index]
- # 页码输入器
- current_page = validator.file_info[selected_index]['page']
- page_input = st.number_input(
- "输入页码",
- placeholder="输入页码",
- label_visibility="collapsed",
- min_value=1,
- max_value=len(validator.display_options),
- value=current_page,
- step=1,
- key="page_input"
- )
-
- # 当页码输入改变时,更新文件选择
- if page_input != current_page:
- for i, info in enumerate(validator.file_info):
- if info['page'] == page_input:
- st.session_state.selected_file_index = i
- selected_file = validator.file_paths[i]
- st.rerun()
- break
- # 自动加载文件
- if (st.session_state.selected_file_index >= 0
- and validator.selected_file_index != st.session_state.selected_file_index
- and selected_file):
- validator.selected_file_index = st.session_state.selected_file_index
- st.session_state.validator.load_ocr_data(selected_file)
-
- # 显示加载成功信息
- current_source_name = get_data_source_display_name(validator.current_source_config)
- st.success(f"✅ 已加载 {current_source_name} - 第{validator.file_info[st.session_state.selected_file_index]['page']}页")
- st.rerun()
- else:
- st.warning("当前数据源中未找到OCR结果文件")
-
- # VLM预校验按钮
- if st.button("VLM预校验", type="primary", icon=":material/compare_arrows:"):
- if validator.image_path and validator.md_content:
- validator.vlm_pre_validation()
- else:
- message_box("❌ 请先选择OCR数据文件", "error")
- # 查看预校验结果按钮
- if st.button("查看预校验结果", type="secondary", icon=":material/quick_reference_all:"):
- validator.show_comparison_results_dialog()
- # 显示当前数据源统计信息
- with st.expander("🔧 OCR工具统计信息", expanded=False):
- stats = validator.get_statistics()
- col1, col2, col3, col4, col5 = st.columns(5)
-
- with col1:
- st.metric("📊 总文本块", stats['total_texts'])
- with col2:
- st.metric("🔗 可点击文本", stats['clickable_texts'])
- with col3:
- st.metric("❌ 标记错误", stats['marked_errors'])
- with col4:
- st.metric("✅ 准确率", f"{stats['accuracy_rate']:.1f}%")
- with col5:
- # 显示当前数据源信息
- if validator.current_source_config:
- tool_display = validator.current_source_config['ocr_tool'].upper()
- st.metric("🔧 OCR工具", tool_display)
-
- # 详细工具信息
- if stats['tool_info']:
- st.write("**详细信息:**", stats['tool_info'])
-
- # 其余标签页保持不变...
- tab1, tab2, tab3 = st.tabs(["📄 内容校验", "📄 VLM预校验识别结果", "📊 表格分析"])
-
- with tab1:
- validator.create_compact_layout(config)
- with tab2:
- # st.header("📄 VLM预校验识别结果")
- current_md_path = Path(validator.file_paths[validator.selected_file_index]).with_suffix('.md')
- pre_validation_dir = Path(validator.config['pre_validation'].get('out_dir', './output/pre_validation/')).resolve()
- comparison_result_path = pre_validation_dir / f"{current_md_path.stem}_comparison_result.json"
- pre_validation_path = pre_validation_dir / f"{current_md_path.stem}.md"
- if comparison_result_path.exists():
- # 左边显示OCR结果,右边显示VLM结果
- col1, col2 = st.columns([1,1])
- with col1:
- st.subheader("🤖 原OCR识别结果")
- with open(current_md_path, "r", encoding="utf-8") as f:
- original_md_content = f.read()
- font_size = config['styles'].get('font_size', 10)
- height = config['styles']['layout'].get('default_height', 800)
- layout_type = "compact"
- validator.layout_manager.render_content_by_mode(original_md_content, "HTML渲染", font_size, height, layout_type)
- with col2:
- st.subheader("🤖 VLM识别结果")
- with open(pre_validation_path, "r", encoding="utf-8") as f:
- pre_validation_md_content = f.read()
- font_size = config['styles'].get('font_size', 10)
- height = config['styles']['layout'].get('default_height', 800)
- layout_type = "compact"
- validator.layout_manager.render_content_by_mode(pre_validation_md_content, "HTML渲染", font_size, height, layout_type)
- else:
- st.info("暂无预校验结果,请先运行VLM预校验")
- with tab3:
- # 表格分析页面 - 保持原有逻辑
- st.header("📊 表格数据分析")
-
- if validator.md_content and '<table' in validator.md_content.lower():
- st.subheader("🔍 表格数据预览")
- validator.display_html_table_as_dataframe(validator.md_content)
-
- else:
- st.info("当前OCR结果中没有检测到表格数据")
-
- # with tab4:
- # # 数据统计页面 - 保持原有逻辑
- # st.header("📈 OCR数据统计")
-
- # # 添加数据源特定的统计信息
- # if validator.current_source_config:
- # st.subheader(f"📊 {get_data_source_display_name(validator.current_source_config)} - 统计信息")
-
- # if stats['categories']:
- # st.subheader("📊 类别分布")
- # fig_pie = px.pie(
- # values=list(stats['categories'].values()),
- # names=list(stats['categories'].keys()),
- # title="文本类别分布"
- # )
- # st.plotly_chart(fig_pie, use_container_width=True)
-
- # # 错误率分析
- # st.subheader("📈 质量分析")
- # accuracy_data = {
- # '状态': ['正确', '错误'],
- # '数量': [stats['clickable_texts'] - stats['marked_errors'], stats['marked_errors']]
- # }
-
- # fig_bar = px.bar(
- # accuracy_data, x='状态', y='数量', title="识别质量分布",
- # color='状态', color_discrete_map={'正确': 'green', '错误': 'red'}
- # )
- # st.plotly_chart(fig_bar, use_container_width=True)
-
- if __name__ == "__main__":
- main()
|