| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840 |
- import re
- from typing import Dict, List, Tuple, Optional
- try:
- from .data_type_detector import DataTypeDetector
- from .similarity_calculator import SimilarityCalculator
- from .text_processor import TextProcessor
- except ImportError:
- from data_type_detector import DataTypeDetector
- from similarity_calculator import SimilarityCalculator
- from text_processor import TextProcessor
- class TableComparator:
- """表格数据比较"""
-
- def __init__(self):
- self.detector = DataTypeDetector()
- self.calculator = SimilarityCalculator()
- self.text_processor = TextProcessor()
- self.header_similarity_threshold = 90
- self.content_similarity_threshold = 95
- self.max_paragraph_window = 6
-
- def find_matching_tables(self, tables1: List[List[List[str]]],
- tables2: List[List[List[str]]]) -> List[Tuple[int, int, float]]:
- """
- 智能匹配两个文件中的表格
-
- Returns:
- List[Tuple[int, int, float]]: (table1_index, table2_index, similarity_score)
- """
- matches = []
-
- for i, table1 in enumerate(tables1):
- if not table1:
- continue
-
- best_match = None
- best_score = 0
-
- for j, table2 in enumerate(tables2):
- if not table2:
- continue
-
- # 计算表格相似度
- score = self._calculate_table_similarity(table1, table2)
-
- if score > best_score:
- best_score = score
- best_match = j
-
- if best_match is not None and best_score > 50: # 至少50%相似度
- matches.append((i, best_match, best_score))
- print(f" 📊 表格匹配: 文件1表格{i+1} ↔ 文件2表格{best_match+1} (相似度: {best_score:.1f}%)")
-
- return matches
-
- def _get_max_columns(self, table: List[List[str]]) -> int:
- """获取表格的最大列数"""
- if not table:
- return 0
- return max(len(row) for row in table)
-
- def _calculate_table_similarity(self, table1: List[List[str]],
- table2: List[List[str]]) -> float:
- """计算两个表格的相似度"""
- if not table1 or not table2:
- return 0.0
-
- # 1. 行数相似度 (权重: 15%)
- row_count1 = len(table1)
- row_count2 = len(table2)
- row_similarity = 100 * (1 - abs(row_count1 - row_count2) / max(row_count1, row_count2))
-
- # 2. 列数相似度 (权重: 15%) - ✅ 使用最大列数
- col_count1 = self._get_max_columns(table1)
- col_count2 = self._get_max_columns(table2)
-
- max_cols = max(col_count1, col_count2)
- min_cols = min(col_count1, col_count2)
-
- if max_cols == 0:
- col_similarity = 0
- else:
- # 如果列数差异在合理范围内(比如差1-2列),给予较高分数
- col_diff = abs(col_count1 - col_count2)
- if col_diff == 0:
- col_similarity = 100
- elif col_diff <= 2:
- # 差1-2列,给予80-95分
- col_similarity = 100 - (col_diff * 10)
- else:
- # 差异较大时,使用比例计算
- col_similarity = 100 * (min_cols / max_cols)
-
- print(f" 行数对比: {row_count1} vs {row_count2}, 相似度: {row_similarity:.1f}%")
- print(f" 列数对比: {col_count1} vs {col_count2}, 相似度: {col_similarity:.1f}%")
-
- # 3. 表头相似度 (权重: 50%) - ✅ 先检测表头位置
- header_row_idx1 = self.detect_table_header_row(table1)
- header_row_idx2 = self.detect_table_header_row(table2)
-
- print(f" 表头位置: 文件1第{header_row_idx1+1}行, 文件2第{header_row_idx2+1}行")
-
- header_similarity = 0
- if header_row_idx1 < len(table1) and header_row_idx2 < len(table2):
- header1 = table1[header_row_idx1]
- header2 = table2[header_row_idx2]
-
- if header1 and header2:
- # ✅ 智能表头匹配
- header_similarity = self._calculate_header_similarity_smart(header1, header2)
-
- print(f" 表头相似度: {header_similarity:.1f}%")
-
- # 4. 内容特征相似度 (权重: 20%)
- content_similarity = self._calculate_content_features_similarity(table1, table2)
-
- print(f" 内容特征相似度: {content_similarity:.1f}%")
-
- # ✅ 调整权重分配
- total_similarity = (
- row_similarity * 0.15 + # 行数 15%
- col_similarity * 0.15 + # 列数 15%
- header_similarity * 0.50 + # 表头 50% (最重要)
- content_similarity * 0.20 # 内容 20%
- )
-
- return total_similarity
-
- def _calculate_header_similarity_smart(self, header1: List[str],
- header2: List[str]) -> float:
- """
- 智能计算表头相似度
-
- 处理以下情况:
- 1. 列数不同但表头内容相似
- 2. PaddleOCR可能将多行表头合并
- 3. 表头顺序可能不同
- """
- if not header1 or not header2:
- return 0.0
-
- # 标准化表头
- norm_headers1 = [self.normalize_header_text(h) for h in header1]
- norm_headers2 = [self.normalize_header_text(h) for h in header2]
-
- # 方法1: 精确匹配 (最高优先级)
- common_headers = set(norm_headers1) & set(norm_headers2)
- max_len = max(len(norm_headers1), len(norm_headers2))
-
- if max_len == 0:
- return 0.0
-
- exact_match_ratio = len(common_headers) / max_len
-
- # 方法2: 模糊匹配 (针对列数不同的情况)
- fuzzy_matches = 0
-
- # 使用较短的表头作为基准
- if len(norm_headers1) <= len(norm_headers2):
- base_headers = norm_headers1
- compare_headers = norm_headers2
- else:
- base_headers = norm_headers2
- compare_headers = norm_headers1
-
- for base_h in base_headers:
- best_similarity = 0
- for comp_h in compare_headers:
- similarity = self.calculator.calculate_text_similarity(base_h, comp_h)
- if similarity > best_similarity:
- best_similarity = similarity
- if best_similarity == 100:
- break
-
- # 如果相似度超过70%,认为是匹配的
- if best_similarity > 70:
- fuzzy_matches += 1
-
- fuzzy_match_ratio = fuzzy_matches / max_len if max_len > 0 else 0
-
- # 方法3: 关键字匹配 (识别常见表头)
- key_headers = {
- 'date': ['日期', 'date', '时间', 'time'],
- 'type': ['类型', 'type', '业务', 'business'],
- 'number': ['号', 'no', '编号', 'id', '票据', 'bill'],
- 'description': ['摘要', 'description', '说明', 'remark'],
- 'amount': ['金额', 'amount', '借方', 'debit', '贷方', 'credit'],
- 'balance': ['余额', 'balance'],
- 'counterparty': ['对手', 'counterparty', '账户', 'account', '户名', 'name']
- }
-
- def categorize_header(h: str) -> set:
- categories = set()
- h_lower = h.lower()
- for category, keywords in key_headers.items():
- for keyword in keywords:
- if keyword in h_lower:
- categories.add(category)
- return categories
-
- categories1 = set()
- for h in norm_headers1:
- categories1.update(categorize_header(h))
-
- categories2 = set()
- for h in norm_headers2:
- categories2.update(categorize_header(h))
-
- common_categories = categories1 & categories2
- all_categories = categories1 | categories2
-
- category_match_ratio = len(common_categories) / len(all_categories) if all_categories else 0
-
- # ✅ 综合三种方法,加权计算
- final_similarity = (
- exact_match_ratio * 0.4 + # 精确匹配 40%
- fuzzy_match_ratio * 0.4 + # 模糊匹配 40%
- category_match_ratio * 0.2 # 语义匹配 20%
- ) * 100
-
- print(f" 精确匹配: {exact_match_ratio:.1%}, 模糊匹配: {fuzzy_match_ratio:.1%}, 语义匹配: {category_match_ratio:.1%}")
-
- return final_similarity
-
- def _calculate_content_features_similarity(self, table1: List[List[str]],
- table2: List[List[str]]) -> float:
- """计算表格内容特征相似度"""
- # 统计数字、日期等特征
- features1 = self._extract_table_features(table1)
- features2 = self._extract_table_features(table2)
-
- # 比较特征
- similarity_scores = []
-
- for key in ['numeric_ratio', 'date_ratio', 'empty_ratio']:
- if key in features1 and key in features2:
- diff = abs(features1[key] - features2[key])
- similarity_scores.append(100 * (1 - diff))
-
- return sum(similarity_scores) / len(similarity_scores) if similarity_scores else 0
-
- def _extract_table_features(self, table: List[List[str]]) -> Dict:
- """提取表格特征"""
- total_cells = 0
- numeric_cells = 0
- date_cells = 0
- empty_cells = 0
-
- for row in table:
- for cell in row:
- total_cells += 1
-
- if not cell or cell.strip() == '':
- empty_cells += 1
- continue
-
- if self.detector.is_numeric(cell):
- numeric_cells += 1
-
- if self.detector.extract_datetime(cell):
- date_cells += 1
-
- return {
- 'numeric_ratio': numeric_cells / total_cells if total_cells > 0 else 0,
- 'date_ratio': date_cells / total_cells if total_cells > 0 else 0,
- 'empty_ratio': empty_cells / total_cells if total_cells > 0 else 0,
- 'total_cells': total_cells
- }
-
- def normalize_header_text(self, text: str) -> str:
- """标准化表头文本"""
- # 移除括号内容
- text = re.sub(r'[((].*?[))]', '', text)
- # 移除空格
- text = re.sub(r'\s+', '', text)
- # 只保留字母、数字和中文
- text = re.sub(r'[^\w\u4e00-\u9fff]', '', text)
- return text.lower().strip()
-
- def detect_table_header_row(self, table: List[List[str]]) -> int:
- """
- 智能检测表格的表头行索引
-
- 检测策略:
- 1. 查找包含表头关键字最多的行
- 2. 确认下一行是数据行(或分类行)
- 3. 特殊处理:资产负债表等多层表头
- """
- if not table:
- return 0
-
- header_keywords = [
- '日期', 'date', '时间', 'time',
- '类型', 'type', '业务', 'business',
- '号', 'no', '编号', 'id', '票据', 'bill',
- '摘要', 'description', '说明', 'remark',
- '金额', 'amount', '借方', 'debit', '贷方', 'credit',
- '余额', 'balance',
- '对手', 'counterparty', '账户', 'account', '户名', 'name',
- # ✅ 新增:资产负债表关键词
- # '资产', 'asset', '负债', 'liability', '期末', 'period', '期初'
- '期末', 'period', '期初'
- ]
-
- best_header_row = 0
- best_score = 0
- for row_idx, row in enumerate(table[:10]):
- if not row:
- continue
-
- # 计算关键字匹配分数
- keyword_count = 0
- non_empty_cells = 0
-
- for cell in row:
- cell_text = str(cell).strip()
- if cell_text:
- non_empty_cells += 1
- cell_lower = cell_text.lower()
-
- for keyword in header_keywords:
- if keyword in cell_lower:
- keyword_count += 1
- break
-
- if non_empty_cells < 3:
- continue
-
- keyword_ratio = keyword_count / non_empty_cells if non_empty_cells > 0 else 0
- column_bonus = min(non_empty_cells / 5, 1.0)
- score = keyword_ratio * 0.7 + column_bonus * 0.3
-
- # ✅ 改进:跳过分类行和数据行检测
- if row_idx + 1 < len(table):
- next_row = table[row_idx + 1]
- # 如果下一行是数据行,加分
- if self._is_data_row(next_row):
- score += 0.2
- # ✅ 新增:如果下一行是分类行(如"流动资产:"),小幅加分
- elif self._is_category_row(next_row):
- score += 0.1
- if score > best_score:
- best_score = score
- best_header_row = row_idx
-
- if best_score < 0.3:
- print(f" ⚠️ 未检测到明确表头,默认使用第1行 (得分: {best_score:.2f})")
- return 0
-
- print(f" 📍 检测到表头在第 {best_header_row + 1} 行 (得分: {best_score:.2f})")
- return best_header_row
- def _is_category_row(self, row: List[str]) -> bool:
- """
- ✅ 新增:判断是否为分类行(如"流动资产:")
- """
- if not row:
- return False
-
- category_patterns = [
- # r'流动[资产负债]',
- # r'非流动[资产负债]',
- r'.*:$', # 以冒号结尾
- ]
-
- for cell in row:
- cell_text = str(cell).strip()
- if not cell_text:
- continue
-
- for pattern in category_patterns:
- if re.search(pattern, cell_text):
- return True
-
- return False
-
- def _is_data_row(self, row: List[str]) -> bool:
- """
- 判断是否为数据行(改进版)
-
- ✅ "-" 符号表示金额为0或空,应该被认为是有效的数据单元格
- """
- if not row:
- return False
-
- data_pattern_count = 0
- non_empty_count = 0
-
- for cell in row:
- cell_text = str(cell).strip()
- if not cell_text:
- continue
-
- non_empty_count += 1
-
- # ✅ "-" 符号也是有效的数据(表示0或空)
- if cell_text == '-' or cell_text == '—' or cell_text == '--':
- data_pattern_count += 1
- continue
-
- # 包含数字
- if re.search(r'\d', cell_text):
- data_pattern_count += 1
-
- # 包含日期格式
- if re.search(r'\d{4}[-/年]\d{1,2}[-/月]\d{1,2}', cell_text):
- data_pattern_count += 1
-
- # 包含金额格式
- if re.search(r'-?\d+[,,]?\d*\.?\d+', cell_text):
- data_pattern_count += 1
-
- if non_empty_count == 0:
- return False
-
- # 至少30%的单元格包含数据特征
- return data_pattern_count / non_empty_count >= 0.3
-
- def compare_table_headers(self, headers1: List[str], headers2: List[str]) -> Dict:
- """比较表格表头"""
- result = {
- 'match': True,
- 'differences': [],
- 'column_mapping': {},
- 'similarity_scores': []
- }
-
- if len(headers1) != len(headers2):
- result['match'] = False
- result['differences'].append({
- 'type': 'table_header_critical',
- 'description': f'表头列数不一致: {len(headers1)} vs {len(headers2)}',
- 'severity': 'critical'
- })
- return result
-
- for i, (h1, h2) in enumerate(zip(headers1, headers2)):
- norm_h1 = self.normalize_header_text(h1)
- norm_h2 = self.normalize_header_text(h2)
-
- similarity = self.calculator.calculate_text_similarity(norm_h1, norm_h2)
- result['similarity_scores'].append({
- 'column_index': i,
- 'header1': h1,
- 'header2': h2,
- 'similarity': similarity
- })
-
- if similarity < self.header_similarity_threshold:
- result['match'] = False
- result['differences'].append({
- 'type': 'table_header_mismatch',
- 'column_index': i,
- 'header1': h1,
- 'header2': h2,
- 'similarity': similarity,
- 'description': f'第{i+1}列表头不匹配: "{h1}" vs "{h2}" (相似度: {similarity:.1f}%)',
- 'severity': 'medium' if similarity < 50 else 'high'
- })
- else:
- result['column_mapping'][i] = i
-
- return result
-
- def compare_cell_value(self, value1: str, value2: str, column_type: str,
- column_name: str = '') -> Dict:
- """比较单元格值"""
- result = {
- 'match': True,
- 'difference': None
- }
-
- v1 = self.text_processor.normalize_text(value1)
- v2 = self.text_processor.normalize_text(value2)
-
- if v1 == v2:
- return result
-
- if column_type == 'text_number':
- norm_v1 = self.detector.normalize_text_number(v1)
- norm_v2 = self.detector.normalize_text_number(v2)
-
- if norm_v1 == norm_v2:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_text',
- 'value1': value1,
- 'value2': value2,
- 'description': f'文本型数字格式差异: "{value1}" vs "{value2}" (内容相同,空格不同)',
- 'severity': 'low'
- }
- else:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_text',
- 'value1': value1,
- 'value2': value2,
- 'description': f'文本型数字不一致: {value1} vs {value2}',
- 'severity': 'high'
- }
- return result
-
- if column_type == 'numeric':
- if self.detector.is_numeric(v1) and self.detector.is_numeric(v2):
- num1 = self.detector.parse_number(v1)
- num2 = self.detector.parse_number(v2)
- if abs(num1 - num2) > 0.01:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_amount',
- 'value1': value1,
- 'value2': value2,
- 'diff_amount': abs(num1 - num2),
- 'description': f'金额不一致: {value1} vs {value2}',
- 'severity': 'high' # ✅ 修改:金额差异 = high
- }
- else:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_text',
- 'value1': value1,
- 'value2': value2,
- 'description': f'长数字字符串不一致: {value1} vs {value2}',
- 'severity': 'medium' # ✅ 修改:数字字符串差异 = medium
- }
- elif column_type == 'datetime':
- datetime1 = self.detector.extract_datetime(v1)
- datetime2 = self.detector.extract_datetime(v2)
-
- if datetime1 != datetime2:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_datetime',
- 'value1': value1,
- 'value2': value2,
- 'description': f'日期时间不一致: {value1} vs {value2}',
- 'severity': 'medium' # 日期差异 = medium
- }
- else:
- similarity = self.calculator.calculate_text_similarity(v1, v2)
- if similarity < self.content_similarity_threshold:
- result['match'] = False
- result['difference'] = {
- 'type': 'table_text',
- 'value1': value1,
- 'value2': value2,
- 'similarity': similarity,
- 'description': f'文本不一致: {value1} vs {value2} (相似度: {similarity:.1f}%)',
- 'severity': 'low' if similarity > 80 else 'medium' # 根据相似度判断
- }
-
- return result
-
- def compare_tables(self, table1: List[List[str]], table2: List[List[str]]) -> List[Dict]:
- """标准表格比较"""
- differences = []
- max_rows = max(len(table1), len(table2))
-
- for i in range(max_rows):
- row1 = table1[i] if i < len(table1) else []
- row2 = table2[i] if i < len(table2) else []
-
- max_cols = max(len(row1), len(row2))
-
- for j in range(max_cols):
- cell1 = row1[j] if j < len(row1) else ""
- cell2 = row2[j] if j < len(row2) else ""
-
- if "[图片内容-忽略]" in cell1 or "[图片内容-忽略]" in cell2:
- continue
-
- if cell1 != cell2:
- if self.detector.is_numeric(cell1) and self.detector.is_numeric(cell2):
- num1 = self.detector.parse_number(cell1)
- num2 = self.detector.parse_number(cell2)
- if abs(num1 - num2) > 0.001:
- differences.append({
- 'type': 'table_amount',
- 'position': f'行{i+1}列{j+1}',
- 'file1_value': cell1,
- 'file2_value': cell2,
- 'description': f'金额不一致: {cell1} vs {cell2}',
- 'severity': 'high', # ✅ 添加:金额差异 = high
- 'row_index': i,
- 'col_index': j
- })
- else:
- differences.append({
- 'type': 'table_text',
- 'position': f'行{i+1}列{j+1}',
- 'file1_value': cell1,
- 'file2_value': cell2,
- 'description': f'文本不一致: {cell1} vs {cell2}',
- 'severity': 'medium', # ✅ 添加:文本差异 = medium
- 'row_index': i,
- 'col_index': j
- })
-
- return differences
-
- def compare_table_flow_list(self, table1: List[List[str]], table2: List[List[str]]) -> List[Dict]:
- """流水列表表格比较算法"""
- differences = []
-
- if not table1 or not table2:
- return [{
- 'type': 'table_empty',
- 'description': '表格为空',
- 'severity': 'critical'
- }]
-
- print(f"\n📋 开始流水表格对比...")
-
- # 检测表头位置
- header_row_idx1 = self.detect_table_header_row(table1)
- header_row_idx2 = self.detect_table_header_row(table2)
-
- if header_row_idx1 != header_row_idx2:
- differences.append({
- 'type': 'table_header_position',
- 'position': '表头位置',
- 'file1_value': f'第{header_row_idx1 + 1}行',
- 'file2_value': f'第{header_row_idx2 + 1}行',
- 'description': f'表头位置不一致: 文件1在第{header_row_idx1 + 1}行,文件2在第{header_row_idx2 + 1}行',
- 'severity': 'high'
- })
-
- # 比对表头前的内容
- if header_row_idx1 > 0 or header_row_idx2 > 0:
- print(f"\n📝 对比表头前的内容...")
- pre_header_table1 = table1[:header_row_idx1] if header_row_idx1 > 0 else []
- pre_header_table2 = table2[:header_row_idx2] if header_row_idx2 > 0 else []
-
- if pre_header_table1 or pre_header_table2:
- pre_header_diffs = self.compare_tables(pre_header_table1, pre_header_table2)
- for diff in pre_header_diffs:
- diff['type'] = 'table_pre_header'
- diff['position'] = f"表头前{diff['position']}"
- diff['severity'] = 'medium'
- differences.extend(pre_header_diffs)
-
- # 比较表头
- headers1 = table1[header_row_idx1]
- headers2 = table2[header_row_idx2]
-
- print(f"\n📋 对比表头...")
- header_result = self.compare_table_headers(headers1, headers2)
-
- if not header_result['match']:
- print(f"\n⚠️ 表头文字存在差异")
- for diff in header_result['differences']:
- differences.append({
- 'type': diff.get('type', 'table_header_mismatch'),
- 'position': '表头',
- 'file1_value': diff.get('header1', ''),
- 'file2_value': diff.get('header2', ''),
- 'description': diff['description'],
- 'severity': diff.get('severity', 'high'),
- })
- if diff.get('severity') == 'critical':
- return differences
-
- # 检测列类型并比较数据行
- column_types1 = self._detect_column_types(table1, header_row_idx1, headers1)
- column_types2 = self._detect_column_types(table2, header_row_idx2, headers2)
-
- # 处理列类型不匹配
- mismatched_columns = self._check_column_type_mismatch(
- column_types1, column_types2, headers1, headers2, differences
- )
-
- # 合并列类型
- column_types = self._merge_column_types(column_types1, column_types2, mismatched_columns)
-
- # 逐行比较数据
- data_diffs = self._compare_data_rows(
- table1, table2, header_row_idx1, header_row_idx2,
- headers1, column_types, mismatched_columns, header_result['match']
- )
- differences.extend(data_diffs)
-
- print(f"\n✅ 流水表格对比完成,发现 {len(differences)} 个差异")
- return differences
-
- def _detect_column_types(self, table: List[List[str]], header_row_idx: int,
- headers: List[str]) -> List[str]:
- """检测列类型"""
- column_types = []
- for col_idx in range(len(headers)):
- col_values = [
- row[col_idx]
- for row in table[header_row_idx + 1:]
- if col_idx < len(row)
- ]
- col_type = self.detector.detect_column_type(col_values)
- column_types.append(col_type)
- return column_types
-
- def _check_column_type_mismatch(self, column_types1: List[str], column_types2: List[str],
- headers1: List[str], headers2: List[str],
- differences: List[Dict]) -> List[int]:
- """检查列类型不匹配"""
- mismatched_columns = []
- for col_idx in range(min(len(column_types1), len(column_types2))):
- if column_types1[col_idx] != column_types2[col_idx]:
- mismatched_columns.append(col_idx)
- differences.append({
- 'type': 'table_column_type_mismatch',
- 'position': f'第{col_idx + 1}列',
- 'file1_value': f'{headers1[col_idx]} ({column_types1[col_idx]})',
- 'file2_value': f'{headers2[col_idx]} ({column_types2[col_idx]})',
- 'description': f'列类型不一致: {column_types1[col_idx]} vs {column_types2[col_idx]}',
- 'severity': 'high',
- 'column_index': col_idx
- })
-
- total_columns = min(len(column_types1), len(column_types2))
- mismatch_ratio = len(mismatched_columns) / total_columns if total_columns > 0 else 0
-
- if mismatch_ratio > 0.5:
- differences.append({
- 'type': 'table_header_critical',
- 'position': '表格列类型',
- 'file1_value': f'{len(mismatched_columns)}列类型不一致',
- 'file2_value': f'共{total_columns}列',
- 'description': f'列类型差异过大: {len(mismatched_columns)}/{total_columns}列不匹配 ({mismatch_ratio:.1%})',
- 'severity': 'critical'
- })
-
- return mismatched_columns
-
- def _merge_column_types(self, column_types1: List[str], column_types2: List[str],
- mismatched_columns: List[int]) -> List[str]:
- """合并列类型"""
- column_types = []
- for col_idx in range(max(len(column_types1), len(column_types2))):
- if col_idx >= len(column_types1):
- column_types.append(column_types2[col_idx])
- elif col_idx >= len(column_types2):
- column_types.append(column_types1[col_idx])
- elif col_idx in mismatched_columns:
- type1 = column_types1[col_idx]
- type2 = column_types2[col_idx]
-
- if type1 == 'text' or type2 == 'text':
- column_types.append('text')
- elif type1 == 'text_number' or type2 == 'text_number':
- column_types.append('text_number')
- else:
- column_types.append(type1)
- else:
- column_types.append(column_types1[col_idx])
-
- return column_types
-
- def _compare_data_rows(self, table1: List[List[str]], table2: List[List[str]],
- header_row_idx1: int, header_row_idx2: int,
- headers1: List[str], column_types: List[str],
- mismatched_columns: List[int], header_match: bool) -> List[Dict]:
- """逐行比较数据"""
- differences = []
- data_rows1 = table1[header_row_idx1 + 1:]
- data_rows2 = table2[header_row_idx2 + 1:]
- max_rows = max(len(data_rows1), len(data_rows2))
-
- for row_idx in range(max_rows):
- row1 = data_rows1[row_idx] if row_idx < len(data_rows1) else []
- row2 = data_rows2[row_idx] if row_idx < len(data_rows2) else []
- actual_row_num = header_row_idx1 + row_idx + 2
-
- if not row1:
- differences.append({
- 'type': 'table_row_missing',
- 'position': f'第{actual_row_num}行',
- 'file1_value': '',
- 'file2_value': ', '.join(row2),
- 'description': f'文件1缺少第{actual_row_num}行',
- 'severity': 'high',
- 'row_index': actual_row_num
- })
- continue
-
- if not row2:
- differences.append({
- 'type': 'table_row_missing',
- 'position': f'第{actual_row_num}行',
- 'file1_value': ', '.join(row1),
- 'file2_value': '',
- 'description': f'文件2缺少第{actual_row_num}行',
- 'severity': 'high',
- 'row_index': actual_row_num
- })
- continue
-
- # 逐列比较
- max_cols = max(len(row1), len(row2))
- for col_idx in range(max_cols):
- cell1 = row1[col_idx] if col_idx < len(row1) else ''
- cell2 = row2[col_idx] if col_idx < len(row2) else ''
-
- if "[图片内容-忽略]" in cell1 or "[图片内容-忽略]" in cell2:
- continue
-
- column_type = column_types[col_idx] if col_idx < len(column_types) else 'text'
- column_name = headers1[col_idx] if col_idx < len(headers1) else f'列{col_idx + 1}'
-
- compare_result = self.compare_cell_value(cell1, cell2, column_type, column_name)
-
- if not compare_result['match']:
- diff_info = compare_result['difference']
- type_mismatch_note = ""
- if col_idx in mismatched_columns:
- type_mismatch_note = " [列类型冲突]"
-
- # ✅ 确定最终严重度:优先使用 diff_info 的 severity
- base_severity = diff_info.get('severity', 'medium')
-
- # 如果列类型冲突,且基础严重度不是 high,则提升到 high
- final_severity = 'high' if col_idx in mismatched_columns else base_severity
-
- differences.append({
- 'type': diff_info['type'],
- 'position': f'第{actual_row_num}行第{col_idx + 1}列',
- 'file1_value': diff_info['value1'],
- 'file2_value': diff_info['value2'],
- 'description': diff_info['description'] + type_mismatch_note,
- 'severity': final_severity, # ✅ 使用计算后的严重度
- 'row_index': actual_row_num,
- 'col_index': col_idx,
- 'column_name': column_name,
- 'column_type': column_type,
- 'column_type_mismatch': col_idx in mismatched_columns,
- })
-
- return differences
|