| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909 |
- """
- 表格单元格匹配器
- 负责将 HTML 表格单元格与 PaddleOCR bbox 进行匹配
- """
- from typing import List, Dict, Tuple, Optional
- from bs4 import BeautifulSoup
- import numpy as np
- try:
- from rapidfuzz import fuzz
- except ImportError:
- from fuzzywuzzy import fuzz
- try:
- from .text_matcher import TextMatcher
- from .bbox_extractor import BBoxExtractor
- except ImportError:
- from text_matcher import TextMatcher
- from bbox_extractor import BBoxExtractor
- class TableCellMatcher:
- """表格单元格匹配器"""
-
- def __init__(self, text_matcher: TextMatcher,
- x_tolerance: int = 3,
- y_tolerance: int = 10,
- inclination_threshold: float = 0.3):
- """
- Args:
- text_matcher: 文本匹配器
- x_tolerance: X轴容差(用于列边界判断)
- y_tolerance: Y轴容差(用于行分组)
- """
- self.text_matcher = text_matcher
- self.x_tolerance = x_tolerance
- self.y_tolerance = y_tolerance
- self.inclination_threshold = inclination_threshold # 倾斜校正阈值(度数)
-
- def enhance_table_html_with_bbox(self, html: str, paddle_text_boxes: List[Dict],
- start_pointer: int, table_bbox: Optional[List[int]] = None) -> Tuple[str, List[Dict], int]:
- """
- 为 HTML 表格添加 bbox 信息(优化版:使用行级动态规划)
- """
- soup = BeautifulSoup(html, 'html.parser')
- cells = []
-
- # 🔑 第一步:筛选表格区域内的 paddle boxes
- table_region_boxes, actual_table_bbox = self._filter_boxes_in_table_region(
- paddle_text_boxes[start_pointer:],
- table_bbox,
- html
- )
-
- if not table_region_boxes:
- print(f"⚠️ 未在表格区域找到 paddle boxes")
- return str(soup), cells, start_pointer
-
- print(f"📊 表格区域: {len(table_region_boxes)} 个文本框")
-
- # 🔑 第二步:将表格区域的 boxes 按行分组
- grouped_boxes = self._group_paddle_boxes_by_rows(
- table_region_boxes,
- y_tolerance=self.y_tolerance,
- auto_correct_skew=True,
- inclination_threshold=self.inclination_threshold
- )
-
- # 🔑 第三步:在每组内按 x 坐标排序
- for group in grouped_boxes:
- group['boxes'].sort(key=lambda x: x['bbox'][0])
-
- grouped_boxes.sort(key=lambda g: g['y_center'])
-
- # 🔑 第四步:智能匹配 HTML 行与 paddle 行组
- html_rows = soup.find_all('tr')
- row_mapping = self._match_html_rows_to_paddle_groups(html_rows, grouped_boxes)
-
- print(f" HTML行: {len(html_rows)} 行, 映射: {len([v for v in row_mapping.values() if v])} 个有效映射")
-
- # 🔑 第五步:遍历 HTML 表格,使用 DP 进行行内匹配
- for row_idx, row in enumerate(html_rows):
- group_indices = row_mapping.get(row_idx, [])
-
- if not group_indices:
- continue
-
- # 合并多个组的 boxes
- current_boxes = []
- for group_idx in group_indices:
- if group_idx < len(grouped_boxes):
- current_boxes.extend(grouped_boxes[group_idx]['boxes'])
-
- # 再次按 x 排序确保顺序
- current_boxes.sort(key=lambda x: x['bbox'][0])
-
- html_cells = row.find_all(['td', 'th'])
- if not html_cells:
- continue
-
- # 🎯 核心变更:使用行级 DP 替代原来的顺序匹配
- # 输入:HTML 单元格列表, OCR Box 列表
- # 输出:匹配结果列表
- dp_results = self._match_cells_in_row_dp(html_cells, current_boxes)
-
- print(f" 行 {row_idx + 1}: {len(html_cells)} 列, 匹配到 {len(dp_results)} 个单元格")
- # 解析 DP 结果并填充 cells 列表
- for res in dp_results:
- cell_idx = res['cell_idx']
- match_info = res['match_info']
-
- cell_element = html_cells[cell_idx]
- cell_text = cell_element.get_text(strip=True)
-
- matched_boxes = match_info['boxes']
- matched_text = match_info['text']
- score = match_info['score']
-
- # 标记 box 为已使用
- paddle_indices = []
- for box in matched_boxes:
- box['used'] = True
- paddle_indices.append(box.get('paddle_bbox_index', -1))
-
- # 计算合并后的 bbox (使用原始坐标 original_bbox 优先)
- merged_bbox = self._merge_boxes_bbox(matched_boxes)
-
- # 注入 HTML 属性
- cell_element['data-bbox'] = f"[{merged_bbox[0]},{merged_bbox[1]},{merged_bbox[2]},{merged_bbox[3]}]"
- cell_element['data-score'] = f"{score:.4f}"
- cell_element['data-paddle-indices'] = str(paddle_indices)
-
- # 构建返回结构 (保持与原函数一致)
- cells.append({
- 'type': 'table_cell',
- 'text': cell_text,
- 'matched_text': matched_text,
- 'bbox': merged_bbox,
- 'row': row_idx + 1,
- 'col': cell_idx + 1,
- 'score': score,
- 'paddle_bbox_indices': paddle_indices
- })
-
- print(f" 列 {cell_idx + 1}: '{cell_text[:15]}...' 匹配 {len(matched_boxes)} 个box (分值: {score:.1f})")
- # 计算新的指针位置 (逻辑保持不变:基于 used 标记)
- used_count = sum(1 for box in table_region_boxes if box.get('used'))
- new_pointer = start_pointer + used_count
-
- print(f" 总计匹配: {len(cells)} 个单元格")
-
- return str(soup), cells, new_pointer
- def _merge_boxes_bbox(self, boxes: List[Dict]) -> List[int]:
- """辅助函数:合并多个 box 的坐标"""
- if not boxes:
- return [0, 0, 0, 0]
-
- # 优先使用 original_bbox,如果没有则使用 bbox
- def get_coords(b):
- return b.get('original_bbox', b['bbox'])
-
- x1 = min(get_coords(b)[0] for b in boxes)
- y1 = min(get_coords(b)[1] for b in boxes)
- x2 = max(get_coords(b)[2] for b in boxes)
- y2 = max(get_coords(b)[3] for b in boxes)
- return [x1, y1, x2, y2]
- def _match_cells_in_row_dp(self, html_cells: List, row_boxes: List[Dict]) -> List[Dict]:
- """
- 使用动态规划进行行内单元格匹配
- 目标:找到一种分配方案,使得整行的匹配总分最高
- """
- n_cells = len(html_cells)
- n_boxes = len(row_boxes)
-
- # dp[i][j] 表示:前 i 个单元格 消耗了 前 j 个 boxes 的最大得分
- dp = np.full((n_cells + 1, n_boxes + 1), -np.inf)
- dp[0][0] = 0
-
- # path[i][j] = (prev_j, matched_info) 用于回溯
- path = {}
-
- # 允许合并的最大 box 数量
- MAX_MERGE = 5
-
- for i in range(1, n_cells + 1):
- cell = html_cells[i-1]
- cell_text = cell.get_text(strip=True)
-
- # 如果单元格为空,允许继承状态(相当于跳过该单元格)
- if not cell_text:
- for j in range(n_boxes + 1):
- if dp[i-1][j] > -np.inf:
- dp[i][j] = dp[i-1][j]
- path[(i, j)] = (j, None)
- continue
- # 遍历当前 box 指针 j
- for j in range(n_boxes + 1):
- # 策略 A: 当前单元格不匹配任何 box (Cell Missing / OCR漏检)
- if dp[i-1][j] > dp[i][j]:
- dp[i][j] = dp[i-1][j]
- path[(i, j)] = (j, None)
- # 策略 B: 当前单元格匹配了 k 个 boxes (从 prev_j 到 j)
- # 限制搜索范围:最多往前看 MAX_MERGE 个 box
- search_limit = max(0, j - MAX_MERGE)
-
- # 允许中间跳过少量噪音 box (例如 prev_j 到 j 之间跨度大,但只取了部分)
- # 但为了简化,这里假设是连续取用 row_boxes[prev_j:j]
- for prev_j in range(j - 1, search_limit - 1, -1):
- if dp[i-1][prev_j] == -np.inf:
- continue
-
- candidate_boxes = row_boxes[prev_j:j]
-
- # 组合文本 (使用空格连接)
- merged_text = " ".join([b['text'] for b in candidate_boxes])
-
- # 计算得分
- score = self._compute_match_score(cell_text, merged_text)
-
- # 只有及格的匹配才考虑
- if score > 50:
- new_score = dp[i-1][prev_j] + score
- if new_score > dp[i][j]:
- dp[i][j] = new_score
- path[(i, j)] = (prev_j, {
- 'text': merged_text,
- 'boxes': candidate_boxes,
- 'score': score
- })
- # --- 回溯找最优解 ---
- best_j = np.argmax(dp[n_cells])
- if dp[n_cells][best_j] == -np.inf:
- return []
-
- results = []
- curr_i, curr_j = n_cells, best_j
-
- while curr_i > 0:
- step_info = path.get((curr_i, curr_j))
- if step_info:
- prev_j, match_info = step_info
- if match_info:
- results.append({
- 'cell_idx': curr_i - 1,
- 'match_info': match_info
- })
- curr_j = prev_j
- curr_i -= 1
-
- return results[::-1]
- def _compute_match_score(self, cell_text: str, box_text: str) -> float:
- """
- 纯粹的评分函数:计算单元格文本与候选 Box 文本的匹配得分
- 包含所有防御逻辑
- """
- # 1. 预处理
- cell_norm = self.text_matcher.normalize_text(cell_text)
- box_norm = self.text_matcher.normalize_text(box_text)
-
- if not cell_norm or not box_norm:
- return 0.0
-
- # --- ⚡️ 快速防御 ---
- len_cell = len(cell_norm)
- len_box = len(box_norm)
-
- # 长度差异过大直接 0 分 (除非是包含关系且特征明显)
- if len_box > len_cell * 3 + 5:
- if len_cell < 5: return 0.0
- # --- 🔍 核心相似度计算 ---
- cell_proc = self._preprocess_text_for_matching(cell_text)
- box_proc = self._preprocess_text_for_matching(box_text)
-
- # A. Token Sort (解决乱序)
- score_sort = fuzz.token_sort_ratio(cell_proc, box_proc)
-
- # B. Partial (解决截断/包含)
- score_partial = fuzz.partial_ratio(cell_norm, box_norm)
-
- # C. Subsequence (解决噪音插入)
- score_subseq = 0.0
- if len_cell > 5:
- score_subseq = self._calculate_subsequence_score(cell_norm, box_norm)
- # --- 🛡️ 深度防御逻辑 ---
-
- # 1. 短文本防御
- if score_partial > 80:
- import re
- has_content = lambda t: bool(re.search(r'[a-zA-Z0-9\u4e00-\u9fa5]', t))
-
- # 纯符号防御
- if not has_content(cell_norm) and has_content(box_norm):
- if len_box > len_cell + 2: score_partial = 0.0
-
- # 微小碎片防御
- elif len_cell <= 2 and len_box > 8:
- score_partial = 0.0
-
- # 覆盖率防御
- else:
- coverage = len_cell / len_box if len_box > 0 else 0
- if coverage < 0.3 and score_sort < 45:
- score_partial = 0.0
- # 2. 子序列防御
- if score_subseq > 80:
- if len_box > len_cell * 1.5:
- import re
- if re.match(r'^[\d\-\:\.\s]+$', cell_norm) and len_cell < 12:
- score_subseq = 0.0
- # --- 📊 综合评分 ---
- final_score = max(score_sort, score_partial, score_subseq)
-
- # 精确匹配奖励
- if cell_norm == box_norm:
- final_score = 100.0
- elif cell_norm in box_norm:
- final_score = min(100, final_score + 5)
-
- return final_score
- def _filter_boxes_in_table_region(self, paddle_boxes: List[Dict],
- table_bbox: Optional[List[int]],
- html: str) -> Tuple[List[Dict], List[int]]:
- """
- 筛选表格区域内的 paddle boxes
-
- 策略:
- 1. 如果有 table_bbox,使用边界框筛选(扩展边界)
- 2. 如果没有 table_bbox,通过内容匹配推断区域
-
- Args:
- paddle_boxes: paddle OCR 结果
- table_bbox: 表格边界框 [x1, y1, x2, y2]
- html: HTML 内容(用于内容验证)
-
- Returns:
- (筛选后的 boxes, 实际表格边界框)
- """
- if not paddle_boxes:
- return [], [0, 0, 0, 0]
-
- # 🎯 策略 1: 使用提供的 table_bbox(扩展边界)
- if table_bbox and len(table_bbox) == 4:
- x1, y1, x2, y2 = table_bbox
-
- # 扩展边界(考虑边框外的文本)
- margin = 20
- expanded_bbox = [
- max(0, x1 - margin),
- max(0, y1 - margin),
- x2 + margin,
- y2 + margin
- ]
-
- filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- # 中心点在扩展区域内
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- filtered.append(box)
-
- if filtered:
- # 计算实际边界框
- actual_bbox = [
- min(b['bbox'][0] for b in filtered),
- min(b['bbox'][1] for b in filtered),
- max(b['bbox'][2] for b in filtered),
- max(b['bbox'][3] for b in filtered)
- ]
- return filtered, actual_bbox
-
- # 🎯 策略 2: 通过内容匹配推断区域
- print(" ℹ️ 无 table_bbox,使用内容匹配推断表格区域...")
-
- # 提取 HTML 中的所有文本
- from bs4 import BeautifulSoup
- soup = BeautifulSoup(html, 'html.parser')
- html_texts = set()
- for cell in soup.find_all(['td', 'th']):
- text = cell.get_text(strip=True)
- if text:
- html_texts.add(self.text_matcher.normalize_text(text))
-
- if not html_texts:
- return [], [0, 0, 0, 0]
-
- # 找出与 HTML 内容匹配的 boxes
- matched_boxes = []
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- # 检查是否匹配
- if any(normalized_text in ht or ht in normalized_text
- for ht in html_texts):
- matched_boxes.append(box)
-
- if not matched_boxes:
- # 🔑 降级:如果精确匹配失败,使用模糊匹配
- print(" ℹ️ 精确匹配失败,尝试模糊匹配...")
-
- for box in paddle_boxes:
- normalized_text = self.text_matcher.normalize_text(box['text'])
-
- for ht in html_texts:
- similarity = fuzz.partial_ratio(normalized_text, ht)
- if similarity >= 70: # 降低阈值
- matched_boxes.append(box)
- break
-
- if matched_boxes:
- # 计算边界框
- actual_bbox = [
- min(b['bbox'][0] for b in matched_boxes),
- min(b['bbox'][1] for b in matched_boxes),
- max(b['bbox'][2] for b in matched_boxes),
- max(b['bbox'][3] for b in matched_boxes)
- ]
-
- # 🔑 扩展边界,包含可能遗漏的文本
- margin = 30
- expanded_bbox = [
- max(0, actual_bbox[0] - margin),
- max(0, actual_bbox[1] - margin),
- actual_bbox[2] + margin,
- actual_bbox[3] + margin
- ]
-
- # 重新筛选(包含边界上的文本)
- final_filtered = []
- for box in paddle_boxes:
- bbox = box['bbox']
- box_center_x = (bbox[0] + bbox[2]) / 2
- box_center_y = (bbox[1] + bbox[3]) / 2
-
- if (expanded_bbox[0] <= box_center_x <= expanded_bbox[2] and
- expanded_bbox[1] <= box_center_y <= expanded_bbox[3]):
- final_filtered.append(box)
-
- return final_filtered, actual_bbox
-
- # 🔑 最后的降级:返回所有 boxes
- print(" ⚠️ 无法确定表格区域,使用所有 paddle boxes")
- if paddle_boxes:
- actual_bbox = [
- min(b['bbox'][0] for b in paddle_boxes),
- min(b['bbox'][1] for b in paddle_boxes),
- max(b['bbox'][2] for b in paddle_boxes),
- max(b['bbox'][3] for b in paddle_boxes)
- ]
- return paddle_boxes, actual_bbox
-
- return [], [0, 0, 0, 0]
- def _group_paddle_boxes_by_rows(self, paddle_boxes: List[Dict],
- y_tolerance: int = 10,
- auto_correct_skew: bool = True,
- inclination_threshold: float = 0.3) -> List[Dict]:
- """
- 将 paddle_text_boxes 按 y 坐标分组(聚类)- 增强版本
-
- Args:
- paddle_boxes: Paddle OCR 文字框列表
- y_tolerance: Y 坐标容忍度(像素)
- auto_correct_skew: 是否自动校正倾斜
-
- Returns:
- 分组列表,每组包含 {'y_center': float, 'boxes': List[Dict]}
- """
- if not paddle_boxes:
- return []
-
- # 🎯 步骤 1: 检测并校正倾斜(使用 BBoxExtractor)
- if auto_correct_skew:
- rotation_angle = BBoxExtractor.calculate_skew_angle(paddle_boxes)
-
- if abs(rotation_angle) > inclination_threshold:
- max_x = max(box['bbox'][2] for box in paddle_boxes)
- max_y = max(box['bbox'][3] for box in paddle_boxes)
- image_size = (max_x, max_y)
-
- print(f" 🔧 校正倾斜角度: {rotation_angle:.2f}°")
- paddle_boxes = BBoxExtractor.correct_boxes_skew(
- paddle_boxes, -rotation_angle, image_size
- )
-
- # 🎯 步骤 2: 按校正后的 y 坐标分组
- boxes_with_y = []
- for box in paddle_boxes:
- bbox = box['bbox']
- y_center = (bbox[1] + bbox[3]) / 2
- boxes_with_y.append({
- 'y_center': y_center,
- 'box': box
- })
-
- # 按 y 坐标排序
- boxes_with_y.sort(key=lambda x: x['y_center'])
-
- groups = []
- current_group = None
-
- for item in boxes_with_y:
- if current_group is None:
- # 开始新组
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
- else:
- if abs(item['y_center'] - current_group['y_center']) <= y_tolerance:
- current_group['boxes'].append(item['box'])
- # 更新组的中心
- current_group['y_center'] = sum(
- (b['bbox'][1] + b['bbox'][3]) / 2 for b in current_group['boxes']
- ) / len(current_group['boxes'])
- else:
- groups.append(current_group)
- current_group = {
- 'y_center': item['y_center'],
- 'boxes': [item['box']]
- }
-
- if current_group:
- groups.append(current_group)
-
- print(f" ✓ 分组完成: {len(groups)} 行")
-
- return groups
- def _match_html_rows_to_paddle_groups(self, html_rows: List,
- grouped_boxes: List[Dict]) -> Dict[int, List[int]]:
- """
- 智能匹配 HTML 行与 paddle 分组(增强版 DP:支持跳过 HTML 行,防止链条断裂)
- """
- if not html_rows or not grouped_boxes:
- return {}
-
- mapping = {}
-
- # 🎯 策略 1: 数量相等,简单 1:1 映射
- if len(html_rows) == len(grouped_boxes):
- for i in range(len(html_rows)):
- mapping[i] = [i]
- return mapping
-
- # --- 准备数据 ---
- # 提取 HTML 文本
- html_row_texts = []
- for row in html_rows:
- cells = row.find_all(['td', 'th'])
- texts = [self.text_matcher.normalize_text(c.get_text(strip=True)) for c in cells]
- html_row_texts.append("".join(texts))
- # 预计算所有组的文本
- group_texts = []
- for group in grouped_boxes:
- boxes = group['boxes']
- texts = [self.text_matcher.normalize_text(b['text']) for b in boxes]
- group_texts.append("".join(texts))
- n_html = len(html_row_texts)
- n_paddle = len(grouped_boxes)
- # ⚡️ 优化 3: 预计算合并文本
- MAX_MERGE = 4
- merged_cache = {}
- for j in range(n_paddle):
- current_t = ""
- for k in range(MAX_MERGE):
- if j + k < n_paddle:
- current_t += group_texts[j + k]
- merged_cache[(j, k + 1)] = current_t
- else:
- break
- # --- 动态规划 (DP) ---
- # dp[i][j] 表示:HTML 前 i 行 (0..i) 匹配到了 Paddle 的前 j 组 (0..j) 的最大得分
- # 初始化为负无穷
- dp = np.full((n_html, n_paddle), -np.inf)
- # 记录路径:path[i][j] = (prev_j, start_j)
- # prev_j: 上一行结束的 paddle index
- # start_j: 当前行开始的 paddle index (因为一行可能对应多个组)
- path = {}
- # 参数配置
- SEARCH_WINDOW = 15 # 向前搜索窗口
- SKIP_PADDLE_PENALTY = 0.1 # 跳过 Paddle 组的惩罚
- SKIP_HTML_PENALTY = 0.3 # 关键:跳过 HTML 行的惩罚
- # --- 1. 初始化第一行 ---
- # 选项 A: 匹配 Paddle 组
- for end_j in range(min(n_paddle, SEARCH_WINDOW + MAX_MERGE)):
- for count in range(1, MAX_MERGE + 1):
- start_j = end_j - count + 1
- if start_j < 0: continue
-
- current_text = merged_cache.get((start_j, count), "")
- similarity = self._calculate_similarity(html_row_texts[0], current_text)
-
- penalty = start_j * SKIP_PADDLE_PENALTY
- score = similarity - penalty
-
- # 只有得分尚可才作为有效状态
- if score > 0.1:
- if score > dp[0][end_j]:
- dp[0][end_j] = score
- path[(0, end_j)] = (-1, start_j)
-
- # 选项 B: 第一行就跳过 (虽然少见,但为了完整性)
- # 如果第一行跳过,相当于没有消耗任何 paddle 组,状态难以用 dp[0][j] 表达
- # 这里简化处理,假设第一行必须匹配点什么,或者由后续行修正
- # --- 2. 状态转移 ---
- for i in range(1, n_html):
- html_text = html_row_texts[i]
-
- # 获取上一行所有有效位置
- valid_prev_indices = [j for j in range(n_paddle) if dp[i-1][j] > -np.inf]
-
- # 剪枝
- if len(valid_prev_indices) > 30:
- valid_prev_indices.sort(key=lambda j: dp[i-1][j], reverse=True)
- valid_prev_indices = valid_prev_indices[:30]
- # 🛡️ 关键修复:允许跳过当前 HTML 行 (继承上一行的状态)
- # 如果跳过当前行,Paddle 指针 j 不变
- for prev_j in valid_prev_indices:
- score_skip = dp[i-1][prev_j] - SKIP_HTML_PENALTY
- if score_skip > dp[i][prev_j]:
- dp[i][prev_j] = score_skip
- # 记录路径:start_j = prev_j + 1 表示没有消耗新组 (空范围)
- path[(i, prev_j)] = (prev_j, prev_j + 1)
- # 如果是空行,直接跳过计算,仅保留继承的状态
- if not html_text:
- continue
- # 正常匹配逻辑
- for prev_j in valid_prev_indices:
- prev_score = dp[i-1][prev_j]
-
- max_gap = min(SEARCH_WINDOW, n_paddle - prev_j - 1)
-
- for gap in range(max_gap):
- start_j = prev_j + 1 + gap
-
- for count in range(1, MAX_MERGE + 1):
- end_j = start_j + count - 1
- if end_j >= n_paddle: break
-
- current_text = merged_cache.get((start_j, count), "")
-
- # 长度预筛选
- h_len = len(html_text)
- p_len = len(current_text)
- if h_len > 10 and p_len < h_len * 0.2:
- continue
- similarity = self._calculate_similarity(html_text, current_text)
-
- # 计算惩罚
- # 1. 跳过惩罚 (gap)
- # 2. 长度惩罚 (防止过度合并)
- len_penalty = 0.0
- if h_len > 0:
- ratio = p_len / h_len
- if ratio > 2.0: len_penalty = (ratio - 2.0) * 0.2
- current_score = similarity - (gap * SKIP_PADDLE_PENALTY) - len_penalty
-
- # 只有正收益才转移
- if current_score > 0.1:
- total_score = prev_score + current_score
-
- if total_score > dp[i][end_j]:
- dp[i][end_j] = total_score
- path[(i, end_j)] = (prev_j, start_j)
- # --- 3. 回溯找最优路径 ---
- # 找到最后一行得分最高的结束位置
- best_end_j = -1
- max_score = -np.inf
-
- # 优先找最后一行,如果最后一行没匹配上,往前找
- found_end = False
- for i in range(n_html - 1, -1, -1):
- for j in range(n_paddle):
- if dp[i][j] > max_score:
- max_score = dp[i][j]
- best_end_j = j
- best_last_row = i
- if max_score > -np.inf:
- found_end = True
- break
-
- mapping = {}
- used_groups = set()
-
- if found_end:
- curr_i = best_last_row
- curr_j = best_end_j
-
- while curr_i >= 0:
- if (curr_i, curr_j) in path:
- prev_j, start_j = path[(curr_i, curr_j)]
-
- # 如果 start_j <= curr_j,说明消耗了 Paddle 组
- # 如果 start_j > curr_j,说明是跳过 HTML 行 (空范围)
- if start_j <= curr_j:
- indices = list(range(start_j, curr_j + 1))
- mapping[curr_i] = indices
- used_groups.update(indices)
- else:
- mapping[curr_i] = []
-
- curr_j = prev_j
- curr_i -= 1
- else:
- break
-
- # 填补未匹配的行
- for i in range(n_html):
- if i not in mapping:
- mapping[i] = []
- # --- 4. 后处理:未匹配组的归属 (Orphans) ---
- unused_groups = [i for i in range(len(grouped_boxes)) if i not in used_groups]
-
- if unused_groups:
- print(f" ℹ️ 发现 {len(unused_groups)} 个未匹配的 paddle 组: {unused_groups}")
- for unused_idx in unused_groups:
- unused_group = grouped_boxes[unused_idx]
- unused_y_min = min(b['bbox'][1] for b in unused_group['boxes'])
- unused_y_max = max(b['bbox'][3] for b in unused_group['boxes'])
-
- above_idx = None
- below_idx = None
- above_distance = float('inf')
- below_distance = float('inf')
-
- for i in range(unused_idx - 1, -1, -1):
- if i in used_groups:
- above_idx = i
- above_group = grouped_boxes[i]
- max_y_box = max(above_group['boxes'], key=lambda b: b['bbox'][3])
- above_y_center = (max_y_box['bbox'][1] + max_y_box['bbox'][3]) / 2
- above_distance = abs(unused_y_min - above_y_center)
- break
-
- for i in range(unused_idx + 1, len(grouped_boxes)):
- if i in used_groups:
- below_idx = i
- below_group = grouped_boxes[i]
- min_y_box = min(below_group['boxes'], key=lambda b: b['bbox'][1])
- below_y_center = (min_y_box['bbox'][1] + min_y_box['bbox'][3]) / 2
- below_distance = abs(below_y_center - unused_y_max)
- break
-
- closest_used_idx = None
- merge_direction = ""
-
- if above_idx is not None and below_idx is not None:
- if above_distance < below_distance:
- closest_used_idx = above_idx
- merge_direction = "上方"
- else:
- closest_used_idx = below_idx
- merge_direction = "下方"
- elif above_idx is not None:
- closest_used_idx = above_idx
- merge_direction = "上方"
- elif below_idx is not None:
- closest_used_idx = below_idx
- merge_direction = "下方"
-
- if closest_used_idx is not None:
- target_html_row = None
- for html_row_idx, group_indices in mapping.items():
- if closest_used_idx in group_indices:
- target_html_row = html_row_idx
- break
-
- if target_html_row is not None:
- if unused_idx not in mapping[target_html_row]:
- mapping[target_html_row].append(unused_idx)
- mapping[target_html_row].sort()
- print(f" • 组 {unused_idx} 合并到 HTML 行 {target_html_row}({merge_direction}行)")
- used_groups.add(unused_idx)
-
- # 🔑 策略 4: 第三遍 - 按 y 坐标排序每行的组索引
- for row_idx in mapping:
- if mapping[row_idx]:
- mapping[row_idx].sort(key=lambda idx: grouped_boxes[idx]['y_center'])
-
- return mapping
- def _calculate_similarity(self, text1: str, text2: str) -> float:
- """
- 计算两个文本的相似度,结合字符覆盖率和序列相似度 (性能优化版)
- """
- if not text1 or not text2:
- return 0.0
-
- len1, len2 = len(text1), len(text2)
-
- # ⚡️ 优化 1: 长度快速检查
- # 如果长度差异过大(例如一个 50 字符,一个 2 字符),直接认为不匹配
- if len1 > 0 and len2 > 0:
- min_l, max_l = min(len1, len2), max(len1, len2)
- if max_l > 10 and min_l / max_l < 0.2:
- return 0.0
- # 1. 字符覆盖率 (Character Overlap)
- from collections import Counter
- c1 = Counter(text1)
- c2 = Counter(text2)
-
- intersection = c1 & c2
- overlap_count = sum(intersection.values())
-
- coverage = overlap_count / len1 if len1 > 0 else 0
-
- # ⚡️ 优化 2: 覆盖率低时跳过昂贵的 fuzz 计算
- # 如果字符重叠率低于 30%,说明内容基本不相关,没必要算序列相似度
- if coverage < 0.3:
- return coverage * 0.7
- # 2. 序列相似度 (Sequence Similarity)
- # 使用 token_sort_ratio 来容忍一定的乱序
- seq_score = fuzz.token_sort_ratio(text1, text2) / 100.0
-
- return (coverage * 0.7) + (seq_score * 0.3)
- def _preprocess_text_for_matching(self, text: str) -> str:
- """
- 预处理文本:在不同类型的字符(如中文和数字/英文)之间插入空格,
- 以便于 token_sort_ratio 更准确地进行分词和匹配。
- """
- if not text:
- return ""
- import re
- # 1. 在中文和非中文(数字/字母)之间插入空格
- # 例如: "2024年" -> "2024 年", "ID号码123" -> "ID号码 123"
- text = re.sub(r'([\u4e00-\u9fa5])([a-zA-Z0-9])', r'\1 \2', text)
- text = re.sub(r'([a-zA-Z0-9])([\u4e00-\u9fa5])', r'\1 \2', text)
- return text
- def _calculate_subsequence_score(self, target: str, source: str) -> float:
- """
- 计算子序列匹配得分 (解决 OCR 噪音插入问题)
- 例如: Target="12345", Source="12(date)34(time)5" -> Score close to 100
- """
- # 1. 仅保留字母和数字,忽略符号干扰
- t_clean = "".join(c for c in target if c.isalnum())
- s_clean = "".join(c for c in source if c.isalnum())
-
- if not t_clean or not s_clean:
- return 0.0
-
- # 2. 贪婪匹配子序列
- t_idx, s_idx = 0, 0
- matches = 0
-
- while t_idx < len(t_clean) and s_idx < len(s_clean):
- if t_clean[t_idx] == s_clean[s_idx]:
- matches += 1
- t_idx += 1
- s_idx += 1
- else:
- # 跳过 source 中的噪音字符
- s_idx += 1
-
- # 3. 计算得分
- match_rate = matches / len(t_clean)
-
- # 如果匹配率太低,直接返回
- if match_rate < 0.8:
- return match_rate * 100
-
- # 4. 噪音惩罚 (防止 Target="1", Source="123456789" 这种误判)
- # 计算噪音长度
- noise_len = len(s_clean) - matches
-
- # 允许一定比例的噪音 (例如日期时间插入,通常占总长度的 30%-50%)
- # 如果噪音长度超过目标长度的 60%,开始扣分
- penalty = 0
- if noise_len > len(t_clean) * 0.6:
- excess_noise = noise_len - (len(t_clean) * 0.6)
- penalty = excess_noise * 0.5 # 每多一个噪音字符扣 0.5 分
- penalty = min(penalty, 20) # 最多扣 20 分
-
- final_score = (match_rate * 100) - penalty
- return max(0, final_score)
|